

Holistic Network Defense:
Fusing Host and Network

Features for Attack
Classification

THESIS

Jenny W. Ji, 1st Lieutenant, USAF

AFIT/GE/ENG/11-18

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense,
or the United States Government.

This material is declared a work of the U.S. Government and is not subject to
copyright protection in the United States.

AFIT/GE/ENG/11-18

Holistic Network Defense:
Fusing Host and Network

Features for Attack
Classification

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

Jenny W. Ji, BS

1st Lieutenant, USAF

March
2011

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GE/ENG/11-18

Holistic Network Defense:
Fusing Host and Network

Features for Attack
Classification

Jenny W. Ji, BS

1st Lieutenant, USAF

Approved:

Dr. Gilbert L. Peterson
(Chairman)

date

Dr. Robert F. Mills
(Member)

date

Dr. Michael R. Grimaila
 (Member)

date

v

AFIT/GE/ENG/11-18

Abstract

Defending the cyberspace domain has taken a higher priority as the internet has

become an enabler and integrated component of the defense strategy. At the same time, it

has also opened additional channels for enemy exploitation. Current defensive systems

focus primarily on network data, and are plagued by a high number of false positives

and/or duplicate alerts with no ranking of their importance. This work presents a hybrid

network-host monitoring strategy, which fuses data from both the network and the host to

recognize malware infections. This research seeks to categorize systems into one of three

classes: Normal, Scanning, and Infected. Normal is defined as a computer surfing the

World Wide Web, with antivirus and malware shields up and running, any threats are

assumed to be random. Scanning is defined as the perpetrator having a partial or

complete map of the network and knowing trying exploits at targeted IPs or IP ranges.

Infected is defined as an operational computer surfing the World Wide Web and having

an active trojan infection as defined by the Antivirus alerting to an infection. The

objective is accomplished by fusing data from multiple network host sensors and

extracting features from network traffic using the Fullstats Network Feature generator

and from the host using text mining, looking at the frequency of the 500 most common

strings and analyzing them as word vectors. Testing on data collected at AFIT from the

2010 Cyber Defense eXercise and a controlled data collection of a Normal Windows

vi

Vista host and an Infected Vista host. Hybrid method results outperformed host only

classification by 31.7% and network only classification by 25%. The new approach also

reduces the number of alerts while remaining accurate compared with the commercial

Intrusion Detection System (IDS) SNORT. These results improve the relevance of alerts

so that even the most typical users could understand alert classification messages. A key

benefit of the hybrid data fusion methodology is mission relevant information by

identifying and reporting the progression of an attack through the three stages.

vii

Acknowledgements

To my advisor, course instructors, student colleagues and committee, thank you

for your time and mentorship when I had my many technical roadblocks, and providing

the motivation for me to get back up when I hit them.

To my friends and family, thank you for reminding me that there is a life beyond

the ivory tower.

Finally, I'd like to thank the leadership from my previous assignments, who

believed in and recommended me for a wonderful opportunity to further my academic

credentials and develop skills that will help me wherever my career takes me.

Jenny W. Ji

viii

Table of Contents

(Includes all Tables and Figures)

Abstract ... v

Acknowledgements ... vii

Table of Contents ... viii

List of Abbreviations .. xv

ACM Association for Computing Machinery .. xv

AIS Artificial immune systems ... xv

ANN Artificial Neural Network .. xv

AV AntiVirus.. xv

C&C Command and Control ... xv

CDX Cyber Defense eXercize ... xv

CSV Comma Separated Value .. xv

DARPA Defense Advanced Research Projects Agency xv

DDoS Distributed denial of service ... xv

DLL Dynamic-Linked Library.. xv

DNS Domain Name Server ... xv

DoD Department of Defense... xv

FOL First-order Logic .. xv

ix

GUI Graphical User Interface .. xv

HIDS Host-based intrusion detection system ... xv

HTTP HyperText Transfer Protocol .. xv

I/O Input/output .. xv

IANA Internet Assigned Numbers Authority .. xv

IDS Intrusion detection system .. xv

LVQ Learning Vector Quantization .. xv

MIT Massachusetts Institute of Technology .. xv

NIDS Network IDS .. xvi

NSA National Security Agency ... xvi

OS Operating System .. xvi

PCTCG Principal-subordinate Consequence Tagging Case Grammar xvi

PID Process Identification Numbers .. xvi

ROC Receiver Operating Characteristic .. xvi

SCADA Supervisory Control and Data Acquisition .. xvi

SIGKDD Special Interest Group for KDD .. xvi

SOM Self Organizing Map ... xvi

SVM Support Vector Machine ... xvi

TF/IDF Term Frequency/Inverse Document Frequency xvi

x

I. Introduction .. 17

1.1. Problem Statement ... 19

1.2. Impact of Research .. 21

1.3. Research Overview .. 23

1.3.1. Past Research Summary ... 23

1.3.2. Problem Statement and Hypothesis... 24

1.3.3. Data Source .. 25

1.3.4. Assumptions and Limitations ... 26

1.4 Summary ... 27

II. Literature Review.. 28

2.1. Types of IDS .. 28

2.1.1. Network Intrusion Detection Systems (NIDS)................................. 28

2.1.2. Host Intrusion Detection Systems .. 31

2.1.3. Hybrid Network Host Intrusion Detection Systems 33

Figure 2.1: Types of IDS - ISS.net White Paper [24]. .. 33

2.2. Network Intrusion Detection Datasets ... 35

2.3. Limitations of Statistical Methods ... 38

2.4. Statistical Machine Learning Method Application to IDS 40

2.4.1. Cluster Analysis ... 41

xi

2.4.1.1. Self Organizing Maps.. 42

2.4.1.2. Learning Vector Quantization .. 44

2.4.2. Artificial Neural Network Analysis ... 45

2.4.3. Non-Stationary Models .. 46

2.4.4. Heuristic-based Analysis .. 47

2.4.5. Entropy-based Analysis.. 47

2.4.6. Genetic Algorithms/Immune-base Analysis 49

2.4.7. Data Mining Techniques .. 50

2.4.7.1. Association Rules .. 50

2.4.7.2. Frequent Episode Rules ... 52

2.4.7.3. Classification Rules ... 52

2.5. Thesis Methodology .. 54

2.6. Summary .. 56

III. Methodology ... 57

3.1. Data Acquisition .. 57

3.1.1. Host Settings .. 57

3.1.2. Sensors Selection.. 59

3.1.2.1. Classes of Data Sets .. 59

3.1.2.2. Details of the Snapshot Sensors .. 63

xii

3.1.2.3. Network Packet Sensor ... 66

3.2. Data Preprocessing and CSV file generation 67

3.2.1. Text files ... 67

3.2.2. Network IP Packets (PCAP) ARFF Generation 68

3.2.3. CSV concatenation ... 69

3.3. Weka SMO classifier Training and Testing .. 70

3.4. Disadvantages of the Selected Research Methodology 72

3.5. Summary .. 74

IV. Experimental Results and Analysis .. 75

4.1. The Moore Network Traffic Data Set and IP Feature Extractor 75

Table 4.1: Moore dataset - Number of Instances in each Class [41]. 77

Table 4.2: Fullstats Feature Generation Example Features by Category.............. 77

Table 4.3: Pairs of Features with Perfect Correlation. .. 78

Table 4.4: Uninformative Features. .. 79

4.2. Determining the Machine Learning Algorithm 79

4.2.1. Self Organizing Maps... 80

Table 4.5: Graphical User Interface Parameters. .. 80

Table 4.6: entry 09 confusion matrix of SOM model generated by entry 04. 81

4.2.2. Learning Vector Quantization .. 81

xiii

Table 4.7: Graphical User Interface Parameters LVQ 2.1. 81

Table 4.8: Graphical User Interface Parameters LVQ 3. 82

Table 4.9: entry 02 data set test results from LVQ 2.1 model 04 83

Table 4.10: entry 02 data set test results from LVQ 3 model 04. 84

4.2.3. Support Vector Machines – Weka SMO .. 84

Table 4.11: SMO GUI Parameters. ... 84

Table 4.12: entry 02 data set test results from SMO model 04............................. 85

4.3. Comparison of Machine Learning Methods .. 85

4.4. Hybrid Comparison of Performance to Network or Host Alone 86

Table 4.13: SMO Parameters. ... 87

Table 4.14: Host Only Classification Results Confusion Matrix. 87

Table 4.15: Network Only Classification Results ... 88

Table 4.16: Hybrid Host and Network Classification Results 88

4.5. Hybrid Host-Network Comparison of Performance to SNORT IDS .. 90

4.6. Summary .. 91

V. Conclusion and Future Work .. 93

5.1. Limitations and Assumptions .. 95

5.1.1. Inconsistent Controlled and Uncontrolled Environment 95

5.1.2. Sensor Impact to System .. 96

xiv

5.1.3. Partial Observable Environment .. 97

5.2. Contributions ... 97

5.3. Recommendations for Future Work .. 98

Appendix A. Discriminators and Definitions ... 100

Appendix B. Notes from CDX data collection .. 110

Appendix C. List of Software Tools .. 113

Bibliography ... 116

Vita .. 121

xv

List of Abbreviations

ACM Association for Computing Machinery

AIS Artificial immune systems

ANN Artificial Neural Network

AV AntiVirus

C&C Command and Control

CDX Cyber Defense eXercize

CSV Comma Separated Value

DARPA Defense Advanced Research Projects Agency

DDoS Distributed denial of service

DLL Dynamic-Linked Library

DNS Domain Name Server

DoD Department of Defense

FOL First-order Logic

GUI Graphical User Interface

HIDS Host-based intrusion detection system

HTTP HyperText Transfer Protocol

I/O Input/output

IANA Internet Assigned Numbers Authority

IDS Intrusion detection system

LVQ Learning Vector Quantization

MIT Massachusetts Institute of Technology

xvi

NIDS Network IDS

NSA National Security Agency

OS Operating System

PCTCG Principal-subordinate Consequence Tagging Case Grammar

PID Process Identification Numbers

ROC Receiver Operating Characteristic

SCADA Supervisory Control and Data Acquisition

SIGKDD Special Interest Group for KDD

SOM Self Organizing Map

SVM Support Vector Machine

TF/IDF Term Frequency/Inverse Document Frequency

WEKA Waikato Environment for Knowledge Analysis

17

I. Introduction

The industrial cyber security report produced by the British Columbia Institute of

Technology, and the PA Consulting Group in the April 1st 2005 issue states that there has

been a 10-fold increase in the number of successful cyber attacks on infrastructure

Supervisory Control and Data Acquisition (SCADA) systems since 2000 [5]. The

Department of Defense (DoD) officials have also observed that the number of attempted

intrusions into military networks has increased, from 40,076 incidents in 2001, to 43,086

in 2002, to 54,488 in 2003, and to 24,745 as of June 2004 [5]. A newer report, the 2007 E-

Crime Watch Survey from CSO Magazine found the number of security incidents

increased for the majority of companies polled from the period between 2005 and 2007.

These findings were based on the work of the U.S. Secret Service, Carnegie Mellon

University Software Engineering Institute’s CERT Coordination Center and Microsoft [6].

However, the consequences of these attacks on military operations are not as clear as

financial valuations do not paint the whole picture when national security is at risk. This

prompts a predominantly wait and see stance for much of policy development in this

arena.

Without a doubt, over the last decade, malware has become a primary source of

malicious cyber activity [1]. Malware encompasses a whole progression of escalating

activities that include scanning, (distributed) denial-of-service (DOS), and direct exploit

attacks, taking place across the Internet. Among its various forms, botnets in particular

18

have recently distinguished themselves to be among the premier threats, making up a high

volume of total internet traffic and slowing the information superhighway for all other

users [19]. Like the previous generation of computer viruses and worms, a bot is a self-

propagating application that infects vulnerable hosts through direct exploitation or Trojan

insertion. However, bots distinguish themselves from the other malware forms by their

ability to establish a command and control (C&C) channel through which they can be

updated and directed. Once collectively under the control of a C&C server, bots form what

is referred to as a botnet. Botnets are effectively a collection of zombie computing assets

employed for a variety of illicit activities, including information and computing resource

theft, SPAM production, hosting phishing attacks, or for mounting distributed denial-of-

service (DDoS) attacks.

Over the last decade, the term cyberwar has developed from a mere virtual threat

to more a concern of national security between nation states as demonstrated by recent

examples from Estonia’s internet outage in 2008 [7], and the new software “worm”

Stuxnet [17]. The 2008 Russian invasion of Georgia was reportedly accompanied by a

parallel hit on their information networks [35]. Stuxnet spreads via infected memory sticks

plugged into a computer’s USB port. Stuxnet checks to see if WinCC is running. If it is, it

tries to log in, to install a clandestine “back door” to the internet, and then to contact a

server in Denmark or Malaysia for instructions. Microsoft said in August 2010 that

Stuxnet had infected more than 45,000 computers. At Iran’s uranium-enrichment plant at

Natanz, inspections by the International Atomic Energy Agency found that about half

Iran’s centrifuges are idle and those that work were yielding little. Some say a fall in the

19

number of working centrifuges at Natanz in early 2009 is evidence of a successful Stuxnet

attack. There is little downside to such an attack, because it would be virtually impossible

to prove who did it, but new reports indicate [42] that the sophistication of the code

suggests the effort was backed by a national entity and there is a slew of technically

capable candidates.

1.1. Problem Statement

Network-based intrusion detection systems (NIDS) and intrusion prevention

systems (IPSs) are currently the go-to technology for defending against external network

attacks. Traditional NIDS, whether signature based [48] or anomaly based [3], focus on

inbound packets flows for signs of malicious point-to-point intrusion attempts. Often, a

NIDS is installed at an access gateway, to watch over a network consisting of a multitude

of individual hosts and it is difficult to tell if any one of those is a target or gets

successfully infected by an alert thrown from the NIDS. Network IDS have the capacity to

detect initial incoming intrusion attempts, but at the sacrifice of a very high false positive

rate and an overabundance of relevant true positives as seen by the prolific frequency with

which they produce alarms in operational networks [19]. Furthermore, limited throughput

often requires sampling of traffic; as it would overwhelm the NIDS to inspect every

packet.

On host systems, antivirus (AV) software is relied upon to prevent malicious

downloaded code from being installed. Unfortunately, AV scanning of executables for

malware detection faces a number of significant problems, one being that current malware

programs typically implement run-time packing and self-modifying code [28]. Therefore,

20

the instruction present in the binary on disk is typically different than those executed at

runtime. Distinguishing and preventing a successful local host infection from the myriad

scans, intrusion attempts and AV evasions is ultimately the real goal of effective and

intelligent network security applications. Statistical based methods of intrusion detection

should defend better against a zero day attack, which takes advantage of a bug that neither

the software’s creators nor users are aware of. By finding software vulnerabilities before

the software’s manufacturers, a programmer can create a virus or worm that exploits that

vulnerability and harms computer systems in a variety of ways. While not every zero day

attack truly occurs before software producers are aware of the vulnerability, developing a

patch can take time. Alternatively, software producers may sometimes hold off on

releasing the patch because they do not want to inundate customers with numerous

individual updates. If the vulnerability is not particularly dangerous, software producers

may choose to hold off until multiple updates are collected and release them together as a

package. Still, this approach can potentially expose users to a zero day attack.

Although there are several NIDS and HIDS implementations, there is currently no

commercial IDS and few if any research in this field which fuses data from both of these

sources and applies Machine Learning algorithms for classification of the stages and the

progression of a cyber-attack. There are a few commercial IDS that still use signature

based detection but have augmented the signatures by incorporating host data, examples

being McAfee Entercept and IBM’s Proventia IPS. In the only published paper available

from the literature search on a hybrid methodology by Depren [8], the hybrid

methodology was tested on the flawed MIT Lincoln Labs KDD99 dataset which entirely

21

consists of TCP dumps and no host data. Depren does not explain how the host misuse

detection module contributes to the test results, whereas this thesis will collect host data

alongside network packet dumps. This work seeks to create a proof of concept

methodology for the fusion of network and local host data which will enable an analyst to

filter much of the extraneous network sensor alerts and alleviate the noise issues that are

commonplace with traditional NIDS and HIDS. The method developed performs anomaly

detection based on modeling patterns of features rather than matching a set of features

used in more traditional signature based models. These latter models concentrate on the

fixed features of a specific malware instance, and as a result, are often easily evaded by

code obfuscation or polymorphism, making it straight forward to modify and alter their

appearance without changing the behavior of the running script for successful infiltration

[28].

 1.2. Impact of Research

A signature-based IDS performs well for detecting known threats, but cannot

properly identify a novel threat; it must have a signature in its database which exactly

matches a given threat in order to detect it [19]. System administrators must constantly

update threat-detection signatures to keep up with the ever expanding threat pool.

Additionally, detecting a network attack solely through signature-based systems

has been shown to be unsustainable in both the short and long term [46]. As quickly as a

signature is created for defense against an exploit, a hacker can unleash a slightly tweaked

variant, requiring a completely new signature for detection. This is why zero day exploits

22

are so doubly damaging; a signature has not been created and cannot be deployed in time

to prevent all possible damage.

There are several NIDS (SNORT, BRO, Fragrouter…) and HIDS (Prelude,

OSSEC, Osiris…) available, some of these have aggregators but none combine data from

both locations to classify the state of attack, the work presented in this thesis will

demonstrate that having information available from both host and network increases

classification of attack accuracy much more than each alone.

Given the DoD's heavy dependence upon cyberspace, the vulnerable nature of

cyberspace, and the multitude of threats which aim to undermine its confidentiality,

integrity and availability, continued research of this forward edge domain is paramount.

23

 1.3. Research Overview

One major difficulty facing the cyber situational awareness research community

relates to the hyper-dimensionality of the threat search space. Due to the sheer size of the

cyberspace domain and the limitations of processing power and lack of data abstraction,

the environment will always be partially-observable. Stated otherwise, it is infeasible to

try all combinations of sensor data in real time, sensors need to be wisely chosen for the

system based on its application environment. Theoretically, given infinite time, sensors,

storage and computing power, perfect situational awareness can be derived. Practically,

any situational awareness obtained will be constrained by the resources allocated, data

available, abstraction ability of the system and the time bounds acceptable to solving the

problem. Situational awareness is a computing application like any other, concerned not

only with processing effectiveness, but also its efficiency.

 There are also limits as to how much we should rely on software for

information protection. At hand, there exists many other ways a hacker may try to enter

our network, including social engineering lures to gain passwords from unsuspecting

users, or an insider could completely bypass the network detection sensors and exfiltrate

data with portable media devices by having physical access to the host.

1.3.1. Past Research Summary

Given that signature-based sensors are not feasible for detecting all threats,

researchers must consider alternative solutions [47] [3][19]. Researchers have proposed

many types of threat detection methods, a representative few of these are discussed further

24

in Chapter 2. The bulk of the research efforts for threat detection thus far focuses on

developing methods relying solely on network traffic [21] [15], solely on event logs [34]

[50], or solely on system calls[45]. Unsurprisingly, due to the pressures of finite resources

and push to select the fewest features to process, little or no research efforts thus far has

attempted to combine data from various system sensor categories, such as file I/O,

network traffic and process meta data, in order to form a holistic picture of what data is

most relevant for the identification of threats. Situational awareness research aims to bring

together raw data to formulate higher level views. This requires transforming the data

from its raw form into data which is capable of informing decisions.

1.3.2. Problem Statement and Hypothesis

The present bane of intrusion detection systems is the high incidence of false

positive alerts, the alerting of malicious activity when it is not actually present [49]. There

is a clear trade-off for a system that catches more potential threats; it means that it will

also catch more benign anomalies [39]. More often than not, most alerts will be benign

and everyone knows the story of the boy who cried wolf, the danger being that system

administrators will eventually start disregarding even a true threat. A system administrator

or security personnel must sift through these false alerts in order to locate true positive

alerts which point to real threats. In order to improve the accuracy of IDS and ease the

burden on system administration personnel, a methodology for reducing the incidence of

false positive alerts, while accurately identifying malicious events is needed.

This thesis presents a methodology to utilize the information provided from two

sources, host and network sensors to expand cyberspace data understanding for the

25

purpose of improving threat detection accuracy. By identifying relevant features from an

array of sensor data sources, this methodology will identify not only if a system is under

attack or not, but also what stage an attack is occurring.

The raw host data is obtained using Windows SysInternals tools and the network

traffic is processed with the Fullstats Packet Feature Generator. The resulting features files

are then classified using Weka’s support vector machine algorithm to classify and test

effectiveness. The data collection process involved two environments, The Cyber Defense

eXercise and a Vista Machine surfing the internet. Both host and network attributes were

formatted into CSV format, using 248 numerical packet metrics for the network data and

500 most frequent string n-grams as attributes in the case of SysInternals host data text

files. Weka’s results were supportive of the hypothesis that fusing host and network data

is a more accurate classification method and detailed results are presented in Chapter 4.

1.3.3. Data Source

 Two data sources are used in testing. The first is an isolated network established at

AFIT during the 2010 Cyber Defense eXercize (CDX). The CDX challenges the student

participants to build a network with all of the services required by the National Security

Agency’s (NSA) directive--including e-mail, file sharing, network printing, a Web server,

and a bulletin board system. The mission is to keep those services running while thwarting

attempts to compromise. This year, all teams built their service providing systems or

servers from scratch, and received workstation virtual machines from the NSA.

Participants are directed not to patch the workstations without prior approval. It was

expected that the NSA would find their way into some of the systems regardless of how

26

tightly they were locked down, although it turned out not to be the case for the servers

monitored. The threats tend to cover the full range from downloaded attachments and

links to malicious Web sites, to direct scanning, enumeration, and attempts at exploitation.

 A massive amount of data was collected of AFIT 1 team’s servers and the

analysis was ultimately done on the DNS server running Windows Server 2003 using

memory dump utility win32dd and SysInternals Suite tools to be further detailed in

Chapter 3. AFIT 1 succeeded in preventing NSA infiltration, but as a result, data was of

only one category: scanning. To remedy the situation, data for the normal and infected

classed were obtained on a test network consisting of a Windows Vista host connected to

the Internet using the same collection tools. The host is infected via visits to known

malicious websites as listed in the malware domain list and infection was verified by

antivirus software.

1.3.4. Assumptions and Limitations

There three predominant limitations and assumptions of this research are that the

CDX network was inconsistent and uncontrolled, that the sensors impacted the normal

execution of the system, and there was only partial observability into the exercise conduct.

The host features were created from data mining the raw text files and thus depends

heavily on the application generating these files as they could change the output formats in

later versions. Data collections were also of mixed sources (CDX and Vista internet

networks) which made it artificially easier for classification than would typically occur.

27

1.4 Summary

 As discussed, doing research to select the lightest sensors for needed performance

metrics to extract the best features from is critically important. And by combining network

and host sensors, the alerts can be made both more accurate and informative than at

present, underlying the importance of this research. This chapter serves as an introductory

look at both the current status and the problems of this field of study. Chapter 2 delves

into the established research in the area of intrusion detection, classification methods and

feature selection approaches. Chapter 3 outlines a methodology for data collection,

preprocessing and analysis. Chapter 4 provides results of the experiments and an analysis

of why text mining falls short of the hypothesis for this investigation. Chapter 5

summarizes this thesis’ effort, details the contributions of this work, and offers

recommendations for future work.

28

II. Literature Review

This chapter presents an overview of the existing technologies that are applied to

solve the problem of increasing the accuracy of attack classification using host and

network data in synergy. It provides background of the current research methodologies

and approaches that identify malicious activity, either using only host data [55] or only

network data [50]. It also underscores that approaches that use both are not identified in

the literature. This is not to say that they do not exist as new papers are output almost on a

daily basis and anyone searching this field may come across something that was not in the

search list at the time this compilation was put together. The topics include a discussion of

intrusion detection systems followed by an overview of the most common machine

learning techniques. Finally, it concludes by a brief discussion of the machine learning

techniques and features employed in this research.

2.1. Types of IDS

The following subsections will describe the types of Intrusion Detection Systems

(IDS) and their functions.

2.1.1. Network Intrusion Detection Systems (NIDS)

Network-based intrusion detection systems are designed to monitor network traffic

and are positioned in proximity to the firewall at the border of an intranet to the internet

[48] [60] [18]. Network intrusion detection systems monitor internet packets for

29

suspicious content and either raises an alert about possible malicious content or in the case

of active Network Intrusion Prevention, block those packets entirely.

A network-based IDS typically utilizes a network adapter running in promiscuous

mode to monitor and analyze all traffic in real-time as it travels across the network [48]

[60] [43]. Its attack recognition module uses four common techniques to recognize an

attack signature:

• Pattern, expression or byte-code matching,
• Frequency or threshold crossing
• Correlation of lesser events
• Statistical anomaly detection
• Flow based

NIDS are vulnerable to being overwhelmed by the sheer number of packets that

they are required to inspect [48]. Depending on the amount of analysis performed upon

each packet, a NIDS could be incapable of running real-time for one computer without

lag, yet in theory a NIDS could be tasked with a network of tens or even hundreds of

computers. This issue can be relieved somewhat through optimization of the computer

hosting the NIDS and by reducing the amount of analysis performed on each packet, by

implementing techniques for shallow packet inspection.

The vast majority of NIDS are focused on packet headers [3] [38] [50] [37]

because of the difficulties in sufficient computing resources otherwise needed in reading

the packet payloads, but a rare few do exist [59]. There is a vast array of machine learning

algorithms employed in analyzing packet headers which are detailed in the discussion on

machine learning algorithms for IDS, Section 2.2.

30

One example of the creative use of NIDS research is alert correlation. Nearly all of

the proposed alert correlation methods are based on syntax-oriented approaches. For

example, Wei [60] exploits the semantics of attack behaviors, and presents the semantic

vector space model to extract and classify the attack scenarios automatically. Wei [60]

uses first order predicate logic (FOPL) and linguistics to classify DDoS computer attacks

based on features derived from NIDS alert streams. FOPL is a form of automated

reasoning and here, it aids in analysis of a large volume of data collected from an NIDS.

Wei [60] presents a semantic vector space model that organizes the raw NIDS alerts to

extract features using the common text mining term frequency and the inverse document

frequency (TF/IDF) approach and categorizes the attack scenarios, improving upon

current IDS alerts.

Principal-subordinate Consequence Tagging Case Grammar (PCTCG) [60]

converts the aggregated NIDS alerts into uniform streams. PCTCG is based on Case

Grammar, which has many advantages. First, Case Grammar structure specifies the

semantic relations between a verb and its slots. Second, the Case Grammar cab is easily

represented by a semantic network, which includes abundant semantic relations to express

the alerts associations. Third, unlike the syntactic level, Case Grammar theory is deeply

semantic, which means it does not change under grammatical transformation. PCTCG

uses First-order Logic (FOL) as the alert representation and reasoning language. In

simulations, the backward chaining language Prolog is used for logic programming of

predicate logic. First-order attack resolution works under the Principal-subordinate

relation. When one alert is in the subordinate phase and its subordinate keywords are in a

31

specific relationship with the principle alert, these two alerts are correlated. Based on the

attack ontology and alert contexts, alerts are represented as attack semantic space vectors.

Text categorization techniques are then applied to categorize the intrusion stages. In order

to classify which intrusion category an alert a belongs to, the similarities of a’s semantic

vector and all category vectors are measured. The alert a is then assigned to the category

with the highest value.

 In simulations, the number of alerts had decreased to 29.1%, and 12.2%

respectively [60]. The correct classification rates for three intrusion stages: gather

information, making enable, and launching attack are also presented. The method is fast,

the reasoning time is far less than the alert inter-arrival time. Simulation results also show

the scheme not only performs as well as the traditional alert correlation technique, but also

facilitates intelligent semantic reasoning. There are limitations which Wei identifies as a

compromise between computational power/speed and accuracy of categorization in the

form of the Alert Semantic Context Window Size.

2.1.2. Host Intrusion Detection Systems

Host-based intrusion detection systems are installed directly on a computer and

they monitor its processes for evidence of possible intrusions or intrusion attempts into the

computer system [28]. Examples of such evidence include, but are not limited to log files,

system processes, internet usage, file operations, Windows registry operations, and any

correlation schemes the designer of the IDS believes will provide information about

possible attacks and intrusion attempts.

32

Host-based intrusion detection started in the early 1980s before networks were as

prevalent, complex and interconnected as they are today [24]. In this simpler environment,

it was common practice to review audit logs for suspicious activity.

Host-based IDS have grown to include other technologies. One popular method for

detecting intrusions checks key system files and executables via checksums at regular

intervals for unexpected changes [24]. The timeliness of the response is in direct relation

to the frequency of the polling interval. Finally, some products listen to port activity and

alert administrators when specific ports are accessed. This type of detection brings an

elementary level of network-based intrusion detection into the host-based environment

Host-based intrusion detection systems also have limitations to balance their

successes. These include a lack of portability, storage requirements, and vulnerability.

Host-based intrusion detection systems are usually not portable because they are designed

to protect a certain type of machine with a specific operating system. For example,

providing the same service to a computer running Apple OS X without significant

modifications to a system written for MS Windows 7 is still very much a challenge. This

limits the portability of a given host-based intrusion detection system. HIDS are also

limited by storage requirements, since they are installed directly on the machine they are

tasked to protect, so a trade-off must be made between the detection capabilities of the

IDS and the functionality of the host machine [18]. This presents a challenge to the next

generation melding of Network and Host IDS, as these will likely include the limitations

imposed by the specificity of the host OS.

33

2.1.3. Hybrid Network Host Intrusion Detection Systems

Both network- and host-based IDS solutions have unique strengths and benefits

that complement each other [24]. A next generation IDS, therefore, must include tightly

integrated host and network components. Combining these two technologies will greatly

improve network resistance to attacks and misuse, enhance the enforcement of security

policy and introduce greater flexibility in deployment options.

Figure 2.1: Types of IDS - ISS.net White Paper [24].

Indeed, there is significant research in the area of consolidating network security

alarms into coherent incident pictures [24]. One major vein of research in intrusion report

correlation is that of alert fusion, clustering similar events under a single label [58]. The

34

primary goal of fusion is log reduction, and in most systems similarity is based upon either

attributing multiple events to a single threat agent or providing a consolidated view of a

common set of events that target a single victim. The botnet infection problem does not

satisfy either criteria and makes the feasibility and usefulness of such a goal questionable.

The botnet infection process spans several diverse transactions that occur in multiple

directions and potentially involves several active participants. A more applicable area of

alert correlation research is multistage attack recognition, in which predefined scenario

templates capture multiple state transition sequences that may be initiated by multiple

threat agents [45]. While botnet infections do regularly follow a series of specific steps, it

is rare to accurately detect all steps, and just as difficult to predict the order and time-

window in which these events are recorded.

Erskine [11] used data mining techniques to create a clearer picture of the events in

escalating stages of attack. His work parses the information generated by host sensors and

packet captures to uncover relationships between data, leading to a fuller understanding of

the critical events occurring on a computer under normal, scanning and exploit conditions

while reducing the burden to the system administrator with more accurate alerts and fewer

false positives. A sampling of features used include summary process data, such as

memory utilization, user and system time, number of threads and handles; packet-level

metrics and network volumetric data such as number of bytes sent/received per protocol;

DLL counts and changes, port changes and states, process numbers and logon types, event

traces and counts, just to name a few. The classification is performed with an ANN using

Matlab. The process used to select these features was via manual analysis of the data

35

collected. In contrast, this work is based on data that more closely resembles an

operational environment, and uses network features from research that is popularly cited

to show proven performance in application identification [43]; this is in conjunction with

text mining of host data, something that has not been studied in existing literature.

2.2. Network Intrusion Detection Datasets

Production of accurate and realistically representative training and testing sets for

IDS research is a real and ongoing challenge [38]. Several standard datasets have been

found to be faulty [38] and real effort needs to be put into the data collection process if

results from new algorithms and approaches that claim to be improvements are to be

trusted.

 McHugh [38] provides a critique of the Lincoln Lab's procedures in the creation

of the 1998 (and some of the 1999) IDEVAL dataset. His main criticisms included their

assumptions made without corroborating evidence or descriptions, the traffic density and

uniformity of the dataset, their odd ROC curves used for analysis, and their procedures for

scoring IDSs that make little or no sense with respect to the intrusion detection field. In

conclusion, McHugh finds the IDEVAL dataset a step in the right direction in providing

intrusion detection testing data, but finds many errors in the process that make the dataset

only of limited utility for testing intrusion detection systems.

Maxion and Tan [36] propose a system for benchmarking anomaly-detection

systems, investigating whether the regularity of a data set influences the effectiveness of

36

the IDS. Artificial datasets were generated with a given entropy value between 0 and 1.

Results confirm that regularity of the data set affects the effectiveness of the IDS.

The majority of research performed on intrusion detection datasets has focused on

those consisting of network packet traces of packet header information. Testing of

methodologies at least requires a dataset containing two types of packets: a clean dataset

for training to establish a baseline and a dataset including labeled attacks for testing

performance. Such a dataset is difficult to obtain due privacy laws; Google is a prime

example of a public company that has paid penalties for running aground of this issue, for

example, with the violation of New Zealand privacy law for its mapping project in 2010

[10]. Packet traces can contain personally identifiable information in its payload and must

be scrubbed of user names and passwords as a minimum measure. This is currently a

tedious process which could easily overwhelm any research effort, trying to build a

program that could automate the process of filtering out users, passwords, street addresses,

and phone numbers in the payloads of packets. There is also a fine line between cleaning

data while preserving its usefulness. It is difficult to completely and reliably anonymize

these traces without destroying the value of the packets for researchers and testers of

intrusion detection systems.

Often, storing personally identifiable information is necessary to identify the

perpetrator of an internet attack just as how it is necessary for law enforcement to keep a

national database of fingerprints and DNA. For many IDS, even storing such information

in a short term database could heavily influence the success of detection, adding the

capability to correlate certain combinations of common usernames and passwords to an

37

intruder trying to guess access requirements as an example. The anonymity of the internet

serves as both a sanctuary to those who wish to disrupt and as a hostile battleground to

those seeking to prosecute illegal criminal activities.

Because most prior research has focused on either network features [3] [59] [38]

[50] [37]] or host features [28] [18] [34] [50] [45], there are no publically available data

collections that have network trace packets accompanied by memory images, process

monitor information, or host logs of any sort let alone labeled data. With the most

commonly used internet packet sets already known to be tainted [38] [36], NIDS research

papers have accuracy ratings that should be questioned. Hybrid systems will be further

stunted with results that will be hard to compare and reproduce if there are no publically

available data sets that all researchers could test against.

Due to such severe limitations, data for this thesis was collected from a simulated

exercise and may not be representative of a real world enterprise network and the actual

work conducted on the network. In addition to that handicap, the red team, the NSA for

this exercise, did not provide details as to the type of attack and the times they were

attempted, leading to questions of accurate labeling. There was also a divergence in the

mission of the exercise and the mission of this research; the exercise was a resounding

success in that NSA failed to penetrate and disrupt the team’s services but that also meant

the collected data is lopsided in terms of having a representative set that would contain

samples of both normal and infected hosts. Thus, data had to be supplemented to be able

to provide additional classes using a setup that differed quite significantly from the

environment and host machine in CDX. The results therefore, are highly subject to

38

fluctuation if tested in any other scenario. For example, in real world usage, IPSEC is

cumbersome and is not widely deployed as network protection but it was the AFIT team’s

primary means of security so results and classification models applied on this dataset are

not expected to carry across differing platforms. It is a proof of concept and relative trends

are expected to hold in a variety of situations based on the fact that Moore developed his

packet features generator from extensive testing on a real university network [42].

2.3. Limitations of Statistical Methods

The advantages of anomaly detection systems include lower storage requirements

than a signature detection system. The library it requires for everything that is normal is

orders of magnitudes smaller than the signature library, or everything that is known to be

abnormal. This reduces the amount of space required by an anomaly detection system.

However, the limitations of the datasets previously mentioned also have a huge affect on

the efficacy of pattern matching and statistical methods. Pattern matching relies on

‘learning’ the probability weightings for correlation of subtle differences to models of

malicious abnormal activities. There are many cases where this is not the most optimal

learning strategy. Consider the simple situation of a spam filter blocking. Some spam

filters will block emails that contain words or phrases that have been deemed common to

spammers but that also means that a friend you know not to be spammer will get blocked

even if they write an email to say, only discuss spamming, and that you actually want to

read. Unless you add them to your safe list, a list that may continue to grow over the life

of your account, you may miss many emails that get misclassified as spam. Machine

learning methods are still many generations behind humans in determining intent, better

39

known as semantics. Machine learning is also very heavy on finding correlations that

provide the most information gain, so that the subtlety in the variety of relationships

connecting two things together becomes a concern. Say, you are in an environment where

Google Chrome is the dominant browser and JavaScript is enabled. An attack is underway

that is aimed at a vulnerability in JavaScript independent of browser type but what the

algorithm learns is that that the attack is correlated to Chrome users because it does not

understand the underlying mechanism and is fooled by the prominence of Chrome

browsers in that particular environment. The JavaScript correlation is more subtle and is

overwhelmed by the information gain statistics of the browser type. Thus the new alert

database update that is released to the general public does not help those using Internet

Explorer even though they too can be targeted and does not help users of Chrome with

JavaScript disabled, generating a lot of false positives.

The process to ‘unlearn’ a bad correlation can take as long as it did to ‘learn’ it in

the first place, wasting precious time and resources. While humans also learn empirically,

we also have other methods, such as discovery processes like the scientific method,

troubleshooting charts or sleuthing out the underlying causes of unwanted behavior,

mostly avoiding the more time consuming route of unlearning by waiting for the

probability weights to change. Even the most advanced Artificial Intelligence algorithm

cannot yet determine when best to switch methods of problem solving so that this results

in the necessity of having exceptions lists, which could very quickly grow to be unwieldy

and require regular vigilant maintenance due to the pace of new applications gaining

prominence and old ones growing obsolete. It does not help information security postures

40

that consumer electronics is a trending toward the melding of multiple features and

functions onto a single device. One method of establishing baseline statistics is to develop

the profile of a normal user; the normal user however becomes more complicated as the

model requires more flexibility. Smart-phones now feature many additional bands of

communication like 4G, WIFI, GPS and FM radio to stream video, voice, music and text.

There are ever increasing operating system options (Android, Linux, Windows Mobile to

name just a few) that it presently seems near impossible to distinguish what the typical

profile for a user ought to be. There is a mobile computing security challenge looming on

the horizon with a clear trade-off between security and convenience. A push in advancing

AI research will be required as current available approaches will be hard pressed to meet

those new challenges. In the meantime, human operator training for both administrators

and users, and adherence to policy continues to remain one of the best defenses against

cyber malfeasance. Malware authors could become craftier, using delays, time-triggered

behavior, or command and control mechanisms to try to prevent malicious scripts from

executing during analysis. These options indeed make it very difficult to detect and

identify all threats for even the most advanced forms of intelligence, the eye of a seasoned

human IT professional.

2.4. Statistical Machine Learning Method Application to IDS

The following subsections will describe some common Machine Learning

Algorithms as applied to network anomaly detection.

41

2.4.1. Cluster Analysis

Unsupervised methods, also called clustering, group unlabeled patterns into

clusters based on similarities [7]. Patterns within the same clusters are more similar to

each other than they are to patterns belonging to different clusters. Data clustering is very

useful when little a priori information about the data is available. Clustering methods can

be classified into two categories: hierarchical clustering algorithms and partitioned

clustering algorithms. The degrees of similarity are dependent on the metric selected and

thus the metric must be chosen with care. For example, for an IDS clustering normal,

scanning and infected data. The best features to select are those that differ based on the

presence of malware and suspicious network communication. However, based on how the

data is collected, it could become corrupted by differences in the network environment

and host OS and applications. An unsupervised algorithm could latch on to those

differences which are not pertinent to the goal of the research. Partitioning clusters split a

data set into a user-defined (either a defined number or based on defined distance

threshold) set of separate partitions. Hierarchical clusters split the data set into a data

“tree” that begins with the complete data set and moves down to individual data.

Clustering is applicable to anomaly and intrusion detection because, in theory,

‘normal’ events should be more similar to other ‘normal’ events and ‘abnormal" events

should either be similar to other “abnormal" events or not similar to anything at all [22].

Based upon this principle, abnormal events (in other words intrusions and attacks) can be

defined by anything that does not sufficiently resemble known types or normal events.

Cluster analysis helps to detect intrusions by sorting actions, packets, files, etc. into

42

groups and then flagging those that are not members of any group or who for a group that

does not meet a certain size threshold (assuming that normal events are common and

abnormal ones are rare). Knowledge of the field that clustering is applied to is necessary

as the human must input the number of clusters, as well as a threshold for separation, as

well as determine realistic ratios of representative samples seen in real world situations; or

the danger will be that the clustering algorithm will split groups that should be together

into neighboring clusters or the opposite scenario could occur as well.

2.4.1.1. Self Organizing Maps

SOMs are a method for visualizing data of high dimensionality [59]. The output of

the algorithm form clusters of similarity. Thus, it can be a way to help analyze data when

knowledge of how many classifications there should be is not available beforehand.

One important component of SOM is the weight vectors or “neurons”, these vectors

contain the input data as well as its location in the lattice space. Then, via a very simple

algorithm, the neurons compete for which ones best represent the data:

1. Initialize Map
2. For i from 0 to 1
3. Randomly select a sample
4. Get best matching unit
5. Update winner and neighbors
6. Increase i a small amount
7. End

There are various ways to initialize the weight vectors. One could just assign initial

weight vectors randomly. Calculating SOMs can be computationally expensive depending

on the size of the lattice and the dimensionality of data, so there are some methods of

43

initializing the weights such that samples which are known to be different start off far

away. This can save a significant number of iterations in order to produce a good map.

The next step is to go through all the weight vectors and calculate the distance

from each weight to the chosen sample vector. The weight with the shortest Euclidean

distance is the winner. If there is more than one with the same distance, the winning

weight is chosen randomly among the weights with the shortest distance.

Then, update the weight vectors by determining which weights are considered

neighbors and how much each weight can become more like the sample vector. The

neighbors of a winning weight can be determined using a number of different methods.

Some use concentric squares, others hexagons, or a Gaussian function where every point

with a value above zero is considered a neighbor.

The amount of neighbors decreases over time. This is done so samples can first

move to an area where they will probably be, then refine their position. The function used

to decrease the radius of influence often doesn’t really matter as long as it decreases, so a

linear function is typical.

An attribute of this learning process is that the farther away the neighbor is from

the winning vector, the less it learns. The rate at which the amount a weight can learn

decreases and is typically a Gaussian function. Then as time progresses, the winning

weight becomes slightly more like the sample where the maximum value of i decreases.

The rate at which the amount a weight can learn falls of linearly.

44

2.4.1.2. Learning Vector Quantization

The basic LVQ approach is based on a standard trained SOM with input vectors

and weight vectors [4]. The new factor is that the input data points have associated class

information. This allows us to use the known classification labels of the inputs to find the

best classification label for each weight vector. For example, by simply counting up the

total number of instances of each class for the inputs within each classification cell, a new

input without a class label can be assigned to the class of the cell it falls within.

The problem with this is that, in general, it is unlikely that the Voronoi cell

boundaries will match up with the best possible classification boundaries, so classification

generalization performance will not be optimized. The obvious solution is to shift the

Voronoi cell boundaries so they better match the classification boundaries.

The LVQ algorithm is as follows:

1. If the input x and the associated weight vector w (i.e. the weight of the winning output

node) have the same class label, then move them closer together by ∆w = β(t)(x − w) as in

the SOM algorithm, where β(t) is a learning rate that decreases with the number of

iterations/epochs of training. This way we get better classification than by SOM alone.

2. If the input x and associated weight vector w have different class labels, then move them

apart by ∆w = −β(t)(x − w).

3. Weights corresponding to other input regions are left unchanged with ∆w = 0.

A second, improved, LVQ algorithm known as LVQ 2.1 is sometimes preferred because it

comes closer in effect to Bayesian decision theory.

45

The same weight/vector update equations are used as in the standard LVQ, but

they only get applied under certain conditions, namely when all three below are met:

1. The input vector x is incorrectly classified by the associated weight vector wI(x).

2. The next nearest weight vector wS(x) does give the correct classification.

3. The input vector x is sufficiently close to the decision boundary between wI(x)

and wS(x).

In this case, both vectors wI(x) and wS(x) are updated (using the incorrect/correct

classification update equations respectively). Other variations on this theme also exist

(LVQ3, etc.).

Hendry and Yang [22] proposed a method of automatic signature creation using

clustering. Data is run through a clustering algorithm that ideally forms normal and

anomalous clusters. Those attributes that are shared by members of each anomalous

cluster can be used as signatures to detect possible intrusions. Upon testing, the algorithm

was able to correctly identify 70%-80% of malicious clusters as anomalous. Several

methods of clustering have been applied to the NIDS problem, including Self-Organizing

Maps [52], Principal Component Analysis [54], Y-means [20] among numerous others.

2.4.2. Artificial Neural Network Analysis

The Artificial Neural Network analysis method for intrusion detection assigns

“weights” to anomalous, perhaps questionable computer usage indicators [11]. As a

computer performs a series of actions due to a given user command, program, etc., these

46

weights are fine tuned as the computer learns from training on known, labeled suspicious

or intrusive actions. Each class has its own set of weight combinations and once learned,

these are used to determine which class a novel sample falls into. If deemed suspicious,

the process is terminated and the proper action is taken by the detection system.

The limitations of this technique are related to the size and accuracy of the training

set. System administrators and managers may perform “questionable” actions on the

computer during routine maintenance and upgrading and so over time, the algorithm

slowly can be trained to accept intrusive activities as normal [47], or sometimes otherwise

known as drift. Radial basis function (RBF) network [63], Boltzmann machine [30],

Kohonen self-organizing network [52] are just a few examples of ANNs employed in this

field.

2.4.3. Non-Stationary Models

Non-stationary models are best represented by Bayesian probability models [33].

Adjustment of probability weightings are based mostly on frequency of occurrence. For

example, an action that is performed daily or hourly is much more likely to occur at any

given time than an action that was last performed several months or years previously.

Early email SPAM prevention algorithms are a prime example of an application [40].

In non-stationary models, the probability of an action occurring is defined as the

inverse of the time since the action was last performed. If an action is performed whose

probability exceeds a set threshold then that action is labeled intrusive.

47

The main limitation of this system is that there exist legitimate actions that are

only performed infrequently and a pure probability model is thus insufficient [33]. The

model does not allow for any form of understanding of the underlying behaviors and

mechanisms that a system administrator is trying to allow or prevent.

2.4.4. Heuristic-based Analysis

Nearly all current commercial antivirus software utilizes heuristic approaches via

rule-based systems to detect malicious software that does not match an existing signature

[36]. This means, that the component of the heuristic engine that conducts the analysis

extracts certain rules from a file and these rules are compared against a set of rule for

malicious code like a simple event correlator. If a rule matches, an alarm is triggered. A

heuristic scan checks to determine if a defined series of actions is occurring together

within a defined window (for example a port sweep) that would indicate that an attack is

in progress.

The major drawbacks of heuristic-based analysis are the space requirements for

storage of the algorithm, the tuning and maintenance to fit the host, and the CPU

requirements for the scans of the heuristic algorithm [44].

2.4.5. Entropy-based Analysis

In entropy-based analysis, intrusions are detected through analysis of the

uniformity of the data set [50]. As each packet, action, etc. is processed by the detection

system, the entropy of the data set as a whole is recalculated. If the new packet, action,

etc. is normal, it should not change the entropy of the data set significantly or even not at

48

all. However, if the new item is anomalous, it should significantly increase the entropy of

the data set by a proportion relative to the size of the data set (the larger the data set, the

less a single item will be able to affect its entropy). If an item is found to be anomalous, it

is marked for proper action and removed from the data set to decrease the total entropy.

Another option is to keep the data set the same size by removing the oldest item as each

new normal item is added. This would allow for growth of the data set over time to match

a user's potentially changing habits.

The major issues with this approach involve the uniformity of the data set in

general. If the data set is not chosen to be sufficiently uniform, the entropy of the normal

items alone will be large enough to mask most intrusions. However, if the data set is too

well defined, even intrusions may have a low enough entropy to go undetected simply

because an unimportant or constant value is chosen as the basis for the entropy

measurements.

Plattner and Wagner [50] describe a methodology for the detection of large-scale

scanning worm outbreak using an analysis of the entropy of IP networks. The authors state

that when a worm outbreak occurs, the entropy of source IP addresses decreases (due to a

few, infected addresses having a great increase in traffic) while the entropy of destination

IP addresses increases (due to multiple addresses being scanned by the infected

computers). Likewise, source port entropy decreases and destination port entropy

increases, although this is a less reliable measure. The authors measure the entropy of a

system by using the metric of the size of a compressed object as a value for basing its

entropy. The authors tested their system with the Blaster and Witty worms and data from a

49

Swiss backbone internet operator and reported favorable results. While this system works

for fast, large-scale scanning worms, it would work far less effectively for slow and

stealthy worms. Other applications to network anomaly detection include [32] [29].

2.4.6. Genetic Algorithms/Immune-base Analysis

Immune-based detection algorithms mimic the biological immune system in

detecting anomalies and intrusions [62]. Artificial immune systems (AISs) break data into

packets, audit files, etc. into strings of a set length of (usually binary) characters. To detect

intrusions, an artificial immune system trains detectors through positive or negative

selection. In positive selection, detectors are trained to only complement normal

occurrences and everything that does not complement a detector is assumed by the AIS to

be an intrusion. In negative selection, much like antibodies, detectors are trained to not

complement normal occurrences and anything that does complement a detector is assumed

by the AIS to be an intrusion. Detector training requires a dataset of purely normal

occurrences. The detectors are compared to the data set and any that do not fulfill the

requirements are removed. Then detectors are tested against a data set of mixed known

normal and anomalous traffic. The best detectors are preserved and mutated and retested

until an optimal set of detectors is reached for the data set. Then detectors are deployed to

detect intrusions in unlabeled data sets, labeling intrusions based upon their

complementarity to detectors of a certain type (positive or negative selection). In immune-

based detection, complementarity is defined as anything that complements within a set

margin (or else detectors would have to perfectly complement intrusions or self, which

reduces this to a signature-based detection technique).

50

The major limitation of immune-based analysis and of many machine learning

methods is that it requires a clean training data set and a known labeled malicious data set.

The only known paired data set of this type is the MIT/DARPA IDEVAL data set and that

data set is rather outdated and known to contain corrupted traces and unrealistic traffic

conditions. Extensive work in this area can be further found in [38] [53].

2.4.7. Data Mining Techniques

Data mining is an area of research dealing with the extraction of features from a

data set, that can ultimately be used to define and classify that set and similar sets. This is

a useful technique in intrusion detection and can be used in both signature-based and

anomaly-based detection techniques [7]. The data mining techniques mentioned here are

association rules, frequent episode rules, and classification rules.

2.4.7.1. Association Rules

Association rule mining finds interesting associations and/or correlation

relationships among large set of data items [7]. Association rules show attribute value

conditions that occur frequently together in a given dataset. Association rules are the

simplest of the data mining techniques and uses Bayesian Probability formulas.

Association rules provide information in the form of "if-then" statements. These rules are

computed from the data and, unlike the if-then rules of logic, association rules are

probabilistic in nature. The statistical measures related to this rule are “support” which is

the fraction of the data set that fulfills both sides of the rule (both the first and the second

events have occurred) and “confidence” which is the probability that the second event will

happen if the first event has already happened.

51

In a more general sense, all “preventative" intrusion detection is based upon

application of the association rule. In preventative intrusion detection, the detection

system examines data for evidence that an intrusion is about to or likely to happen based

upon past actions of a user or computer that the host is interfacing with. If such evidence

is found, the detection system decides that an attack is likely and takes appropriate

measures.

Wang, et al. [59] describe the development of a worm detection system based on

detecting anomalous payloads attached to internet packets. The software scans ingress and

egress packets for anomalies and correlates anomalous ingress packets with anomalous

egress packets of similar purpose (for example ingress packets that target port 80 and

egress packets that target port 80). Packet matching is accomplished through a threshold-

based measure of longest common substring or longest common subsequence. In testing,

the system seems to perform very well (100% detection no false positives), but this was

only on four different worm samples. Further testing is necessary with a greater variety of

worms and other anomalous (but benign) packets.

Yung [62] describes a method of detecting hackers through examination of query

and response times on computers. Typically, hackers use a chain of machines (Stepping

Stones such as anonymous proxies) to hide their identity while they work. This creates a

delay between query and response of the attacker's machine and the eventual target

machine. The author proposes that such possible attacks can be detected by monitoring

query and response times for unusual delays. While this method is inexact and prone to

52

error, it’s simple, fast and may be useful in highlighting a possible malicious connection

for further examination.

2.4.7.2. Frequent Episode Rules

Frequent episode rules are an extension of association rules to apply to three

events rather than two. They state that if two events A and B have already occurred, it is

likely that an event C will also occur within a set period of time. Once again the statistics

of support and confidence apply, but also the statistic “window width” which is the

maximum period of time in which event C is expected to occur after events A and B have

occurred [7]. Being able to connect sequences of events to each other brings us closer to a

primitive form of behavior understanding.

Once again, the major application of frequent episode rules is in statistical analysis

methods. The use of frequent episode rules would allow a network to more accurately

predict the next node in a network. For example, copying text and opening a text editor

would imply that the next action would be to paste the text into the editor. However,

simply opening a text editor could lead to a general range of actions rather than the

specific one of pasting text from the clipboard.

2.4.7.3. Classification Rules

Clustering is used to sort data into groups based on shared attributes and groups of

attributes. Then, classification rules describing these clusters, in relation to the inputs, are

generated. For example, a decision tree can be further developed from the classification

rules.

53

Kanlayasiri, et al. [26] describe a methodology for detecting whether or not a

scanning attack is occurring. It checks for a sequence of TCP packets from different ports

on the same IP address that are more numerous than a given value and occur within a

given time period. Upon testing, the authors found that this technique works perfectly on

light, moderate, and heavy load on a given bandwidth.

Duffield, P. Haffner, et al. [9] constructed rules at the flow level that accurately

reproduce the action of packet-level rules. An exhaustive system for translating packet

rules into flow rules must leverage the correlations between the packet payload and flow

header in order to mitigate the impact of losing payload information. The model and

classification for packet rules is as follows: A packet rule is specified by a set of

predicates that are combined through logical AND and OR operations; there are three

types of predicate: flow-header (FH), packet payload (PP), and meta-information (MI)

predicates. To train the machine learning algorithms, it is desired that concurrent flow and

packet traces alert the same ones that Snort raises on these packets.

Adaboost is the ML algorithm this paper settles upon, it uses an L1 linear measure

of simplicity that encourages sparsity, a property that is well matched to the aim of finding

a small number of predicates that are closely related to the packet level rules. The data

was gathered at a gateway serving hundreds of users during August–September 2005. All

traffic traversing an OC-3 link attached to a border router was gathered via an optical

splitter. A standard Linux box performed the role of a monitor reading packets via a DAG

card. Results indicate Adaboost is able to correctly interpret (as opposed to merely mimic)

many header rules by prioritizing the proper fields: the destination port, which encodes the

54

ICMP code and type fields, is essential to each of the ICMP rules. Predicates that require

access to packet payload information, on the other hand, cannot be reproduced in a flow

setting whatsoever. For payload rules to be learned in a flow setting, therefore, the

corresponding flow classifier must rely on some combination of other predicates of the

original Snort rule, and entirely new predicates constructed by the machine learning

algorithm to describe the packets/flows matching these rules. The experiment also

discovered that data drift was largely absent at a timescale of two weeks, far longer than

the few minutes required for learning. Measuring how performance drifts over time is

critical, as it determines how often retraining should be applied.

The advantage of the approach is that the computation complexity remains feasible

at the network scale. However, the limitation here is that packet headers can be easily

spoofed. If this approach indeed becomes an industry standard, it would not be hard for

intruders to insert intentionally erroneous header data in order to mask more nefarious

payload.

2.5. Thesis Methodology

This thesis approaches the problem of malicious activity identification by first

breaking the state of the host into three categories: Normal, Scanning, and Infected.

Normal is when the host is surfing the world wide net and though it may encounter bad

packets, it is not being specifically targeted and all defenses are up, meaning the antivirus

is operational. Scanning is data collected from the CDX exercise when the NSA was

actively scanning for vulnerabilities and trying exploits that could reveal additional

vulnerabilities; however, targeted servers are still up and operational. Infected is the state

55

of the host when a Trojan has been downloaded and confirmed by the antivirus program to

have replicated itself into the file system. The host features were extracted and put into a

CSV file using text mining tools available in Weka from text files derived of the following

SysInternals tools polling in 15 second intervals: DLLs, Handles, LogonSessions, Netstat,

Processes, PsInfo and Services. The CSV file about the network data, captured by

Wireshark as PCAP files, was derived using an in-house updated version of Andrew

Moore’s Fullstats packet feature generator on those PCAPs, more details of which are in

Chapter 4. The two files were then manually integrated by MS Excel. The final CSV file

was tested and trained using a randomly proportioned 20% for training and 80% for

testing purposes. The algorithm used was Weka SMO, which is a version of Support

Vector Machine, and the reason it was chosen is briefly discussed below and further

expounded upon in Chapter 4.

The intermediate step in this endeavor was to identify which machine learning

algorithm would be used on the collected host and network data to classify them into the

prescribed categories above. The three that were ultimately chosen to test were: Self

Organizing Maps, Learning Vector Quantization and Support Vector Machines, which via

experimentation was determined to be the best at classification. The data set used to test

the performance of these algorithms were those by Dr Andrew Moore of Cambridge

which can be found at the url:

http://www.cl.cam.ac.uk/research/srg/netos/nprobe/data/papers/sigmetrics/

More details about the Moore set is available in Chapter 4. This was done because

those sets were much smaller than the collected combination of host/network data

56

collected from this project and most appropriate for the aim of finding the best performing

algorithm for the real data.

2.6. Summary

This chapter has presented a compilation of the background information relating to

the problem of malicious activity identification either using host or network data. It is

meant to reduce the possibility of replicating work that has already been done. Chapter 3

builds on Erskine’s use of only 6 network features, replacing it with Moore’s 248; it also

takes the idea of data mining for intrusion detection from Julisch [25] by using text mining

techniques on host data, and expands upon Moore’s use of network data for application

identification for use in identification of malicious attacks. Finally, Chapter 3 also

provides further details on the host/network combination in regards to this particular

research project.

57

III. Methodology

This chapter describes the research methodology used to evaluate of the first ever

attempt at hybridizing the network and host feature data, applying a machine learning

algorithm to detect network attack stages. The processed data obtained by Windows

SysInternals tools [51] and Fullstats Packet Feature Generator [41] was run through the

machine learning Weka suite, taking advantage of its support vector machine algorithm to

classify and test effectiveness. First, the data collection process is detailed, which is

followed by a description of how the collected data was formatted into CSV format and in

the case of SysInternals text files, filtered for the most frequent string n-grams. Finally,

Weka’s role in analyzing the preprocessed data is explained. Results of the analysis are

presented in Chapter 4.

3.1. Data Acquisition

The following subsections describe the process of data collection, the types of data

and their significance.

3.1.1. Host Settings

Due to the difficulties in acquiring good data as touched upon in Chapters 1 and 2,

the data collected from the Cyber Defense Exercise was deemed insufficient to represent

the three classes being discriminated between: Normal (normal user activity), Scanning

(malicious targeted scanning), and Infected (Trojan/Worm infestation). The purpose of

CDX was unfortunately not aligned with the purpose of requisite data for this research.

The majority of teams involved in CDX achieved their goal of keeping their services up,

58

playing active defense against a continuous cyber assault throughout the three and a half

day exercise. This however, ran counter to the goal of collecting a good representative

sample that consisted of normal activity, scanning activity, attempted exploit activity, and

successful infection. In the end, the data from CDX was determined to be representative of

scanning activity and attempted exploit only. Furthermore, since NSA did not release their

exact activities, these two activities were combined into one category that should describe

activity representative of a targeted network that hackers are purposefully scanning, trying

to find vulnerabilities. The CDX data for the scanning category used in the final analysis

was from the network DNS server running Windows 2003 server. A more detailed

explanation of the requirements and difficulties in CDX data collection and

recommendations is available in Appendix B.

Because of the lack of data gathered for the categories of Normal and Infected

were separately obtained using a Dell Latitude D630 with Intel Centrino Duo running an

up to date version of Windows Vista connected via a modem to the internet, a simple

scenario that is universal for nearly all internet users at some point. The table below

summarizes the applications running and tools for data collection. The final virus scan

using AVG confirmed that a Trojan had planted itself in two file locations.

• Activity/ Category: Normal
o Host Operating System: Windows Vista Service Pack 2

o Applications: Windows Media Player in continuous MP3 loop, Microsoft

Internet Explorer 8.0 running automatic page refresh in 2 minute intervals
using www.lazywebtools.co.uk/cycler.html, AVG antivirus patched and
fully running

59

o Data Collection Tools (sensors): Always on: Wireshark, Snort IDS with
standard rule set; 15 minute intervals: Win32dd memory capture; 1 minute
intervals: C:\WINDOWS\System32\drivers\etc\services; SysInternals:
Listdlls, LogonSessions, Handle, Pslist, NetStat; Once per logon: PsInfo

• Activity/ Category: Infected
o Host Operating System: Windows Vista Service Pack 2

o Applications: Windows Media Player in continuous MP3 loop, Microsoft

Internet Explorer 8.0 running automatic page refresh in 2 minute intervals
using www.lazywebtools.co.uk/cycler.html, AVG anti-virus Resident
Shield off

o Data Collection Tools (sensors): Always on: Wireshark, Snort IDS with
standard rule set; 15 minute intervals: Win32dd memory capture; 1 minute
intervals: C:\WINDOWS\System32\drivers\etc\services; SysInternals:
Listdlls, LogonSessions, Handle, Pslist, NetStat; Once per logon: PsInfo

Infection Mechanism Went down the list of IPs on

http://www.malwaredomainlist.com/mdl.php until an active malicious website was

located. When located, the browser safety page was triggered and AVG confirmed block

of attempted download of malicious script. Then, confirmed proceed anyway in browser,

AVG blocking was turned off and web page was refreshed to successfully download

malicious code into host.

3.1.2. Sensors Selection

The following subsections describe the sensors used to collect raw data.

3.1.2.1. Classes of Data Sets

To capture forensic evidence to give the bigger picture, two types of sensors are

used: transactional sensors and snapshot sensors. Transactional sensors capture each

60

transaction within the sensor’s monitoring realm. Transactional sensors continuously

capture data until they are halted, or until some user-defined rule is met (such as time limit

or file size thresholds). An example of this type of sensor is Wireshark [44], a popular

sniffer also used by Erskine to monitor a network device for inbound and outbound

network packets and save the entire session into a PCAP file for later analysis. Another

transactional sensor is Snort, which logs suspicious network activity in real time. Snapshot

sensors capture, and provide raw or summary data about a subset of features that can be

used to describe the current system state or configuration. An example of a snapshot

sensor is SysInternal’s pslist.exe [51], which displays a snapshot of process in execution

and processor utilization. System events which start and stop between snapshots, in this

case, within 15 seconds, may make no imprint on a snapshot sensor.

The purpose of the normal collection is to generate a set of data which consists

only of typical user activity in a real environment. Since I am surfing the real Internet to

collect this data, it’s highly probable that exploits and scanning are being attempted but

that the antivirus is preventing any form of compromise and the user is not noticing any

anomalous behaviors. It should be pointed out that the important difference is that in the

CDX environment, the scanning is much more aggressive and purposeful because the

network was specifically being targeted, with the IP ranges known to the perpetrator.

During this collection, the settings summarized in the two tables above, the host runs

Windows media player, Internet Explorer and AVG antivirus with Resident Shield on,

which protects it from downloading and becoming infected by malicious scripts. The data

61

set generated is used to provide a baseline forensic data set to compare with the scanning

and infected collections.

The purpose of the scanning collection is to generate a set of data which consists

of scanning and service enumeration events, searching for vulnerabilities in different

versions of the services like telnet, ssh, http, etc. The scanning collection consists of ping,

Nessus, Nmap and other similar activities NSA may have attempted on the various IP

addresses and ports on the CDX network. The data set generated is used to provide

information to contribute to the model that would eventually recognize early stage

malicious activity and provide more accurate warnings than Snort, which reports all pings

as alerts whether or not it may have only been an innocent check for connectivity.

The purpose of the infected collection is to generate a set of data which consists of

data collected from a host infected with a trojan which should theoretically contain

features that distinguish it from either normal or scanning, such as if the trojan is running

extraneous processes or changing the volume of network traffic.

http://www.malwaredomainlist.com/mdl.php contains a list of known malicious IP

addresses, some of which are active, and some of which have been disabled by the

webhosts. The host computer visited these IP’s until an active malicious website was

located. When located, the browser safety page was triggered and AVG confirmed the

block of an attempted download of malicious script. Then, the host confirmed to proceed

in the browser, AVG blocking was turned off and web page was refreshed to successfully

download malicious code into host. Data was collected and a scan was performed at the

62

end to confirm the computer was indeed infected. The data set generated is used to

provide a representative sample of forensic evidence generated by a trojan infection.

Each dataset consists of outputs from the seven sensors: services.exe; SysInternals:

Listdlls, LogonSessions, Handle, Pslist, NetStat; PsInfo described in detail in Section

3.1.2, which generated thousands of files to parse. Weka was used to create a text ARFF

format file using the command line “java -classpath ./weka.jar

weka.core.converters.TextDirectoryLoader -dir ./testing/ > testing1.arff” This was

immediately re-saved as a CSV file. Then the explorer application was used to open the

newly generated CSV file and a filter was used to convert the text CSV file into word

vector CSV files. This filter is called StringToWordVector and is located under the

unsupervised, attribute folder. StringToWordVector is necessary because the Weka

Support Vector Machine classifier only works with numeric values. StringToWordVector

converts String attributes into a set of attributes representing word occurrence information

from the text contained in the strings. The set of words (attributes) is determined by the

first batch filtered (typically training data). The option for TF/IDF, Term

Frequency/Inverse Document Frequency, was selected and stemming was not done. This

converts the documents into vectors of numbers for later classification.

A separate feature CSV file was generated from the packet capture by Wireshark

using a perl script originated by [41] Andrew Moore of Cambridge University,

fullstat.v1.0.tgz (http://www.cl.cam.ac.uk/research/srg/netos/brasil/downloads/index.

html). This script runs under Ubuntu 5.10 “Breezy Badger” and requires, due to

deprecated functions, the installation of several additional older packages such as gcc

63

4.0.1-3, perl 5.8.7-5, tcpdump 3.9.1-1, the following are listed separately in the Fullstats

readme but are part of tcpdump: tcpdemux, tcptrace, , tcpslice, etc. Breezy Badger’s

update repositories have all been closed due to the age of the OS version but should still

be available for manual install using SourceForge. Appendix A summarizes the extracted

features. Some of the features are correlated, in other words, not all are independent.

Finally, these two CSV files are manually concatenated; data that could not be

matched was discarded so that each set of host data was matched to one set of network

data. The combined file was then trained and tested using a random 20% for training and

the remaining 80% for testing to determine the separability of the data for the three classes

Normal, Scanning and Infected.

3.1.2.2. Details of the Snapshot Sensors

Snapshot Sensors give information about the state at the moment the data is

gathered. The snapshot sensors used in data collection include Pslist, ListDLLs,

logonsessions, Handle, PsInfo, NetStat and looks at the services file under

C:\WINDOWS\system32\drivers\etc\services; this file contains port numbers for well

known services defined by IANA, Internet Assigned Numbers Authority.

Process Overview Sensor

In order to capture summary process data, such as memory utilization, user and

system time, number of threads and handles, SysInternals’ pslist.exe program is used.

Running this tool from the command line provides process ID, process name, user time

and kernel time, sizes of Virtual Memory, Working Set, Private Virtual Memory, Private

64

Virtual Memory Peak and Page Faults. This tool is categorized as an example of a

snapshot sensor. A snapshot is obtained every minute; the data is output to a text file from

a .bat script. While pslist.exe is used in digital forensics research, little to no literature has

been presented which analyzes the output using textual data mining methods in order to

farm for features to use in classification. The attributes identified are thus strings or n-

grams that are identified by frequency and as a downside, also subject to variation based

on how the tool is formatting the output.

Process DLLs Sensor

To help with the mapping of processes, and to which dynamic-linked libraries

(DLL) a process is associated with. SysInternals’ ListDLLs.exe was scripted to take a

“reading” every minute. This tool is another snapshot sensor. ListDLLs shows the full

path names of a processes loaded modules - not just their base names. The output of this

tool was sent to a text file which was later categorized into one of the three classes and

textually mined along with the other SysInternals’ tools’ data collection.

Process to Session Sensor

To monitor the users who are logged on at a point in time and what processes were

started by those users, SysInternals’ logonsessions.exe program is used. It lists the

currently active logon sessions and, if you specify the -p option, it reveals the processes

running in each session. This is primarily useful in discovering unauthorized users that

have gained access via a backdoor and are performing suspicious system calls.

Process to Handle Sensor

65

Handle.Exe is a utility that displays information about open handles for any

process in the system. You can use it to see the programs that have a file open, or to see

the object types and names of all the handles of a program. There is also a GUI-based

version of this program, called Process Explorer at Sysinternals. If you do not specify any

command-line parameters it will list the values of all the handles in the system that refers

to open files and the names of the files. This is the information that was outputted to the

text file to be analyzed in this research.

Windows OS and Hardware Sensor

PsInfo.exe is a command-line tool that gathers key information about the local or

remote Windows NT/2000 system, including the type of installation, kernel build,

registered organization and owner, number of processors and their type, amount of

physical memory, the install date of the system, and if it’s a trial version, the expiration

date.

TCP / UDP connections Sensor

NetStat.exe displays active TCP connections, ports on which the computer is

listening and their associated PID, Ethernet statistics, the IP routing table, IPv4 statistics

(for the IP, ICMP, TCP, and UDP protocols), and IPv6 statistics (for the IPv6, ICMPv6,

TCP over IPv6, and UDP over IPv6 protocols). Used without parameters, netstat displays

active TCP connections. The output is saved as a text file and categorized into one of the

three classes and mined for textual attributes.

CMAT Memory Dump Sensor

66

CMAT is a memory dump analyzer that works in nearly all versions of Windows

[46]. It can output much of the information obtained via the SysInternals snapshot tools

after the fact by parsing memory dumps, which were collected using Mathieu Suiche’s

win32dd/win64dd [56]. The information outputted includes Process Identification

numbers (PIDs), applications, users, Dynamic Linked Libraries (DLL)s, mapped address

spaces and registry keys information. For this research, this tool was tested but the time

needed to analyze all the memory dumps was prohibitive, so due to the limitation of

getting a large enough sample size, this source was omitted. In practical terms, volatile

memory parsing and data gather is a large field of cyber forensics in and of itself.

3.1.2.3. Network Packet Sensor

To capture network packets being sent to the host system, WireShark, a popular

sniffer, is used. All traffic captured over a three to four hour window was run thru the

packet Moore’s Fullstats feature generator. The protocols evaluated include all TCP, UDP,

ICMP, and ARP traffic. Relevant fields captured are listed in Appendix A. There are a

number of digital forensics research efforts which utilize packet capture files as reviewed

in Chapter 2. The features and methodologies vary from signature detection to anomaly

detection, but Haag [21] and Gonzalez [15] both focus on the elements found within

packet header-level metrics. This research is novel in that it combines the textual features

generated by the host sensors with the features generated by the packet flow generator to

determine whether performance can be improved by the added information gain each gets

from the other. The “Network packet sensor” features generated by the Full Stat ARFF

creator containing the complete set of features is in Appendix A.

67

3.2. Data Preprocessing and CSV file generation

3.2.1. Text files

To ready the data for Weka analysis, it must first be converted to a CSV or ARFF

file format. CSV was ultimately chosen because it is easily edited in MS Excel. To create

the preliminary text ARFF, three empty folders are made and named with their

classification name, Normal, Scanning, and Infected. Then those folders are populated

with all the text files generated by the snapshot tools, each in their respective folder.

Then, the Weka Text Directory Loader command line application is used which

transforms a directory of files into an ARFF file. The resultant ARFF file is saved as a

CSV after conversion into a string vector. Since most classifiers in Weka cannot handle

String attributes, for these learning schemes one has to process the data with appropriate

filters, e.g., the StringToWordVector filter which performs a Term Frequency/Inverse

Document Frequency (TF/IDF) transformation. [61] TF/IDF is a weight used in

information retrieval and text mining. This weight is a statistical measure used to evaluate

how important a word is to a document in a collection or corpus. The importance increases

proportionally to the number of times a word appears in the document but is offset by the

frequency of the word in the corpus. Variations of the TF/IDF weighting scheme are often

used by search engines as a central tool in scoring and ranking a document's relevance

given a user query. One of the simplest ranking functions is computed by summing the

TF/IDF for each query term; many more sophisticated ranking functions are variants of

this simple model.

68

3.2.2. Network IP Packets (PCAP) ARFF Generation

The Fullstats Attributes Generator [26] is used to create the full 266 features as for

Traffic Classification. Its output is reduced to 248 features due to the discarding of

confidential information from the flows, such as IP addresses in both directions, Port

Information etc.

1) Firstly you need to create a list which contains the PCAP dump files. This is

then passed to the flowCreator to reassemble the flows and outputs a filelist and also

outputs a directory containing the reassembled flows.

 perl flowCreator.pl dumplist

2) Then the filelist created by flowCreator is passed to the attributeGenerator to

calculate the features. This outputs several files that contain a prefix.

 perl attributeGenerator.pl filelist

3) Finally arffCreator is used to create the ARFF file by appending all the relevant

features from each file created by the attributeGenerator. This outputs two ARFF and two

CSV files: awmreduced and allclass.

 bash arffCreator2.sh output_11........_

The arffCreator requires you to provide the prefix of the files. It also uses two

additional header files to append the Weka headers to the results.

69

3.2.3. CSV concatenation

The two CSV files, one from the word vector CSV consisting of the host snapshot

features and one from Fullstats, consisting of network features, which are further detailed

in Chapter 4, are merged in MS Excel. The Fullstats generated data is unlabeled so it is up

to the user to label these before merging In this situation, data was easily labeled since

they were collected at different times, in scenarios specifically setup up for each class.

Normal was when the Vista was online with AVG running. Infected was with a trojan

downloaded and AVG off and Scanning was collected during CDX. The user must also

try to closely match the time stamps of the host data and network data during the merged

CSV generation process. A host dataset with a timestamp (which is the name of the text

file) is matched to a set of network data estimated to be around the same time. There is a

large margin of error on the order of three hours given the time asynchronization of CDX.

Also the timestamp is largely lost once processed by Fullstats so the window of selection

is done to the packets prior to this processing. Once the same number of samples of

network data is approximately matched to samples of host data, the basic merge consists

of expanding the number of features for the class label such that the features now include

both host and network derived features.

Any of the various numeric Weka classifiers can be used on this CSV file to

determine if the fused host-network set of generated features improves separability over

host or network alone.

70

3.3. Weka SMO classifier Training and Testing

Weka’s Support Vector Machine (SVM) implementation is name SMO. SVMs are

one of the more advanced and accurate methods of data classification, however like many

computational challenges, it is a trade-off of accuracy for speed [37]. SVMs are not yet

primed for real time applications, especially for the high volume task of network and host

data analysis. A general explanation of the theory is presented in this section.

The general idea behind SVMs [18] is that the original feature input space which is

difficult to separate can be mapped to a higher-dimensional feature space where the

training set becomes more easily separable. With this mapping, the discriminant function

is now:

 (1)

There is really no need to know this mapping explicitly, because we only use the

dot product of feature vectors in both the training and test. Thus, a kernel function is

defined that corresponds to a dot product of two feature vectors which maps the samples

into an expanded feature space. For example, a linear kernel function is:

 (2)

Some other commonly used kernels are polynomial, Gaussian and sigmoid [18].

Unfortunately the selection of the best kernel is a trial and error process [18].

To solve for the optimal hyperplane in the linearly separable case, Lagrangian

multipliers are introduced: (Lagrangian Dual Problem)

SV

() () () ()T T
i i

i

g b bφ α φ φ
∈

= + = +∑x w x x x

(,) () ()T
i j i jK φ φ≡x x x x

71

 (3)

Such that and

The solution of the discriminant function is

 (4)

The optimization technique then is the same as for the large margin classifier. The

solution has the form:

 (5)

 .

The basic SVM algorithm is as follows:

1. Choose a kernel function
2. Choose a value for C
3. Solve the quadratic programming problem (many

software packages available)
4. Construct the discriminant function from the support

vectors

Multiclass SVM aims to assign labels to instances by using support vector

machines, where the labels are drawn from a finite set of several elements. The

dominating approach for doing so is to reduce the single multiclass problem into multiple

binary classification problems. Each of the problems yields a binary classifier, which is

1 1 1

1
maximize (,)

2

n n n

i i j i j i j
i i j

y y Kα α α
= = =

−∑ ∑∑ x x

1

0
n

i i
i

yα
=

=∑0 i Cα≤ ≤

SV

() (,)i i
i

g K bα
∈

= +∑x x x

1 SV

n

i i i i i i
i i

y yα α
= ∈

= =∑ ∑w x x

get from () 1 0, T
i ib y b+ − =w x where is support vectorix

72

assumed to produce an output function that gives relatively large values for examples

from the positive class and relatively small values for examples belonging to the negative

class. Two common methods to build such binary classifiers are where each classifier

distinguishes between (i) one of the labels to the rest (one-versus-all) or (ii) between every

pair of classes (one-versus-one). Classification of new instances for one-versus-all case is

done by a winner-takes-all strategy, in which the classifier with the highest output

function assigns the class (it is important that the output functions be calibrated to produce

comparable scores). For the one-versus-one approach, classification is done by a max-

wins voting strategy, in which every classifier assigns the instance to one of the two

classes, then the vote for the assigned class is increased by one vote, and finally the class

with most votes determines the instance classification.

3.4. Disadvantages of the Selected Research Methodology

There is a great disadvantage in the idea behind using text mining techniques to

analyze the snapshot output from a host computer. Specifically, the text processing masks

the need to truly understand the behavior of the processes running at the different stages of

attack. Another major disadvantage is that it is superficial and highly dependent on the

sensor tools and the format in which they output the requested data. The authors of the

utilities may come out with a new version that provides an additional layer or column, or

takes one away. This will change the frequencies of text and word vectors dramatically

even though nothing really has changed “under the hood.” This requires retraining

whereas a model that is based on behavior [19] is not as easily affected by such a trivial

difference. Finally, it adds a level of complexity by having what some may deem as too

73

many attributes/features, numbering in the thousands, because it must count each word

string as an attribute . That diminishes the optimal information gain obtained from having

essentially an internal and external monitor to verify what each is “seeing” on their end.

The one clear advantage of this method is that it closely mimics how people and

human systems administrators deal with this data, and that is they mostly read the lists of

processes, files and timestamps and then combine that information in broad

generalization. They draw conclusions based on a general correlations of this information

in their heads, unlike more common research proposals in the field of attack identification

which is to try to only pick the fewest most information rich features and try to make a

determination from those. This approach is often blindsided by the creativity of human

hackers, who find new ways of infiltration rendering the selection of only those few

features that worked in the past history to be easily thwarted when faced with fresh

challenges.

The other topic of disadvantage is that being the hardships of obtaining good

representative data. Because the data from the scanning was procured from a system on a

simulated internal network with different OSs and running different applications, it should

be no surprise that it easily classifies accurately into its own class. Data obtained while

connected to the actual internet such as those collected for the normal and infected classes

will have much greater overlap and should provide more useful insight into realistic

network and host behavior.

74

3.5. Summary

The host and network data fusion and SVM classification approach is meant to

provide results that validate a proof of concept. That using fused network/host data for a

holistic collection of features performs better than the host or network features alone. All

this is moving towards the goal of more accurate classification of different stages of

network attacks as to be compared with the performances of Snort IDS, pure host side data

and pure network side data. An understanding of research goals and hypothesis, a

description of the data collection and test environments, and a description of the

experiments along with assumptions and limitations, has been provided for anyone

intending to duplicate the results of this study or to re-use certain parts for future work.

The results of the Weka analysis can be found in Chapter 4.

75

IV. Experimental Results and Analysis

This chapter discusses the experimental design, and results of from testing the

hybrid intrusion detection system. The experimental design covers the data sets and

parameters for implementing the experiments. The Moore dataset labeled entry 02, entry

04, entry 08 and entry 09 were used to test the Machine Learning algorithms in Weka,

entry 04 and 08 were used as the training/model building sets and entry 02 and 09 were

used as their respective testing sets. Since the results showed similar trends, only the entry

02/04 experimental pair results are presented. The Moore dataset is used to perform a

comparison test of the Self Organizing Map (SOM), Learning Vector Quantization

(LVQ), and Support Vector Machine (SMO) classifiers which results in the Weka SMO as

the chosen classifier for final testing. Testing the Weka SMO classifier on the CDX/Vista

provided a comparison between pure HIDS (Host data set prior to merging features) and

NIDS (Network data set prior to merge) with that of one form of the hybrid IDS and

discusses the observed performance metrics. Lastly, the summary presents the results in

context and offers a fuller perspective of where things stand.

4.1. The Moore Network Traffic Data Set and IP Feature Extractor

Moore’s data set contains one day of authentic network traffic that was classified

by the type of traffic, day1.TCP.arff.gz (12 classes, shown in Table 4.1) [41] [42]. The

flows labeled as cyber attacks are identified by known signatures, and consist

predominantly of worms and viruses. A table of the features contained in the data set from

[43] appears in Appendix A. The data set provides a look into a real world application of

76

the feature selection problem since it is extracted from a day of network traffic and has

already been processed for metrics and statistics.

The Moore data set contains 377,526 samples of network flows, 248 features, and

12 classes, whose features include nominal, discrete, continuous, missing and noisy

values. The samples of the data are restricted to bidirectional Transmission Control

Protocol (TCP) flows. A portion of the data set is employed for this work since the

original Moore data set consists of too many network flows to handle in a reasonable

amount of time and the researcher encountered unrecoverable heap space issues with the

full Moore data set. The reduced data set consists of 40,858 flows out of the 377,526

flows. A majority of the flows consist of email and World Wide Web traffic and so these

classes have been reduced to preserve a more equivalent ratio with respect to the other

classes. The games class was removed because there were only 8 instances, and due to

restrictions should not appear in enterprise network traffic. The composition by class of

the original and reduced data set is shown in Table 4.1.

The features consist of protocol parameters, network performance, transmission

volume, and size. The features describe many flow characteristics extracted from the

network traffic. Protocol parameters include information taken directly from packet-level

headers. Performance pertains to a combination of features that are affected by flow and

network dynamics (e.g., throughput). Volume includes the quantity of certain

distinguishing packet traits. Size encompasses features that describe the flows in terms of

bytes. Table 4.2 provides several examples of features by category. The features describe

host to host sub flows and aggregate bidirectional statistics and metrics. Specifically, the

77

features include quartile, min, max, average, and median statistics. The data set feature

values are binary, whole and real numbers. Additionally, nearly a third of the values for

some features are missing data.

Table 4.1: Moore dataset - Number of Instances in each Class [41].

Class Original Data Set Reduced Data Set
Games
Interactive
Multimedia
Attack
Peer-to-peer
Services
Database
File Transfer Protocol-passive
File Transfer Protocol-control
File Transfer Protocol-data
Mail
World Wide Web

8
110
576
1,793
2,094
2,099
2,648
2,688

3,054

5,797
28,567
328,092

0
110
576
1,793
2,094
2,099
2,648
2,688

3,054

5,797
9,999
10,000

Total 377,526 40,858

Table 4.2: Fullstats Feature Generation Example Features by Category.

Protocol Parameters Performance Volume Size

stream length

average window size

request for max
segment size

inter-arrival time

throughput

round trip time

number of out-of-order
packets
number of
acknowledgment
packets
number of
retransmissions

average packet size

total bytes sent

amount of control
bytes set

78

The data set presents a complex domain with high dimensionality, varied

correlation, multiple feature types and missing values. Analysis of the data sets shows that

some features are redundant and/or uninformative for the classification task. Pearson’s

correlation coefficient is widely used in the sciences as a measure of the strength of linear

dependence between two variables. Utilizing Pearson’s correlation coefficient as a

measure of the correlation (linear dependence) between two variables X and Y, giving a

value between +1 and −1 inclusive [23] on the feature pairs as indicated in Table 4.3 show

a linear association indicated by |r| = 1. Of the pairings, only a single member of a pair

would need to be assessed for feature selection. Additionally, the data set contains features

with no utility since all their values are zero or missing.

Table 4.3: Pairs of Features with Perfect Correlation.

Index A Feature A Index B Feature B

6 mean IAT 198 mean IAT a b

6 mean IAT 205 mean IAT b a

198 mean IAT a b 205 mean IAT b a

7 q3 IAT 199 q3 IAT a b

7 q3 IAT 206 q3 IAT b a

199 q3 IAT a b 206 q3 IAT b a

217 Effective Bandwidth a
b

218 Effective Bandwidth b
a

79

Table 4.4: Uninformative Features.

Index Feature

76 urgent data pkts b a

78 urgent data bytes b a

103 truncated data a b

104 truncated data b a

106 truncated packets b a

219 FFT all Frequency # 1

229 FFT a b Frequency # 1

239 FFT b a Frequency # 1

Uninformative features are noted in Table 4.4 and may also be removed but were

left for completeness. Many other pairs of features contain extremely high correlations in

excess of 0.99. For the 248 features, there are 30,628 possible combinations of pairings, of

which there are 74 pairings with correlations greater than 0.99, and 326 with correlations

greater than 0.90.

4.2. Determining the Machine Learning Algorithm

This section gives the investigation that was done to determine the best classifier

to be used on the CDX and Vista network data using the Moore network dataset [42].

There are 11 sets total, entry 04 and entry 08 was used as the basis for building the SOM,

LVQ 2.1/3 and SVM classifier models in Weka. Entries 02 and 09 were used as test sets

to produce the results to follow. These entries were selected because they represented a

smaller dataset (02 and 04) and a larger dataset (08 and 09) since one of the findings by

80

Kim [27] was that data set size played a significant role in classification accuracy. It

compares the performance of Self Organizing Maps (SOM), Learning Vector

Quantization (LVQ) version 2.1/3 and Support Vector Machines (SVM) on Andrew

Moore’s data set, an overview of how these algorithms work is generalized here.

4.2.1. Self Organizing Maps

The SOM parameters were the default settings in Weka using the version

downloaded [31] from http://wekaclassalgos.sourceforge.net/, and the reduced data set

was used as described in Table 4.1.

Table 4.5: Graphical User Interface Parameters.

Parameter Value
Debug FALSE
Initialization Mode Random Training Data Proportional
Learning Function Linear Decay
Learning Rate 0.3
Map Height 6
Map Width 8
Neighborhood Function Gaussian
Neighborhood Size 8
Seed 1
Supervised FALSE
Topology Hexagonal
Training Iterations 1440
Use Voting FALSE

Of importance in the Self Organizing Map experiment was that the false positive

rate for the largest class WWW (web browsing traffic) was very high, at 73-93% testing

the model on various data sets, a typical example confusion matrix is displayed in Table

4.6. Also, the size of the data set used to create the model that corresponded with the test

81

set of similar size generally led to better classification accuracy and this was also true of

the other algorithms. Table 4.6 illustrates the confusion matrix test result of classifying

entry 09 network packet flows, using the SOM model generated by training on entry 04 of

the Moore data set.

Table 4.6: entry 09 confusion matrix of SOM model generated by entry 04.

W
W
W

M
AI
L

FTP-
CONTRO
L

FTP-
PASV

ATT
ACK

P
2
P

DATA
BASE

FTP-
DATA

MULTI
MEDIA

SERVI
CES

INTERA
CTIVE

GA
MES

 599
36

365
8 65 1412 361

19
9 15 90 0 337 29 3 WWW

0 0 0 0 0 0 0 0 0 0 0 0 MAIL

0 0 0 0 0 0 0 0 0 0 0 0
FTP-
CONTROL

0 0 0 0 0 0 0 0 0 0 0 0 FTP-PASV

0 0 0 0 0 0 0 0 0 0 0 0 ATTACK

0 0 0 0 0 0 0 0 0 0 0 0 P2P

0 0 0 0 0 0 0 0 0 0 0 0
DATABAS
E

0 0 0 0 0 0 0 0 0 0 0 0
FTP-
DATA

57 20 10 0 6 50 0 0 0 0 0 0
MULTIME
DIA

0 0 0 0 0 0 0 0 0 0 0 0 SERVICES

0 0 0 0 0 0 0 0 0 0 0 0
INTERAC
TIVE

0 0 0 0 0 0 0 0 0 0 0 0 GAMES

4.2.2. Learning Vector Quantization

The LVQ version 2.1 and 3 parameters were the default settings in Weka using the

reduced data set as described in Table 4.1.

Table 4.7: Graphical User Interface Parameters LVQ 2.1.

Parameter Value
Debug False
Initialization Mode Random Training Data Proportional
Learning Function Linear Decay
Learning Rate 0.3

82

Seed 1
Total Codebook Vectors 20
Total Training Iterations 1000
Use Voting False
Window Size 0.3

Table 4.8: Graphical User Interface Parameters LVQ 3.

Parameter Value
Debug False
Epsilon 0.1
Initialization Mode Random Training Data Proportional
Learning Function Linear Decay
Learning Rate 0.3
Seed 1
Total Codebook Vectors 20
Total Training Iterations 1000
Use Voting False
Window Size 0.3

Of importance about the LVQ experimental results was that LVQ 3 performed

much better than LVQ 2.1 90% versus 78% respectively, their confusion matrices are

displayed in Table 4.9 and 4.10 ; LVQ 3 had a higher true positive rate and lower false

positive rate. For version 2.1, two best match units are selected and only updated if one

belongs to the desired class and one does not, and the distance ratio is within a defined

window [4]. The difference in LVQ 3 is that even if both best match units are of the

correct class, they are updated but adjusted using an epsilon value (adjusted learning rate

instead of the global learning rate). Another note in using Weka is to turn voting off, or

else it would basically put everything into the class WWW because of its overwhelming

data proportion relative to the other classes.

83

Table 4.9: entry 02 data set test results from LVQ 2.1 model 04

W
W
W

M
AI
L

FTP-
CONTRO
L

FTP-
PASV

ATT
ACK

P
2
P

DATA
BASE

FTP-
DATA

MULTI
MEDIA

SERVI
CES

INTERA
CTIVE

GA
MES

 184
87

209
3 100 344 19 94 329 1226 141 220 2 0 WWW

0 0 0 0 0 0 0 0 0 0 0 0 MAIL

0 0 0 0 0 0 0 0 0 0 0 0
FTP-
CONTROL

0 0 0 0 0 0 0 0 0 0 0 0 FTP-PASV

72 633 0 0 0 0 0 31 9 0 0 1 ATTACK

0 0 0 0 0 0 0 0 0 0 0 0 P2P

0 0 0 0 0 0 0 0 0 0 0 0
DATABAS
E

0 0 0 0 0 0 0 0 0 0 0 0
FTP-
DATA

0 0 0 0 0 0 0 0 0 0 0 0
MULTIME
DIA

0 0 0 0 0 0 0 0 0 0 0 0 SERVICES

0 0 0 0 0 0 0 0 0 0 0 0
INTERAC
TIVE

0 0 0 0 0 0 0 0 0 0 0 0 GAMES

84

Table 4.10: entry 02 data set test results from LVQ 3 model 04.

WWW MAIL

FTP-
CON
TRO
L

FTP
-
PAS
V

ATT
AC
K P2P

DA
TA
BAS
E

FTP
-
DA
TA

MUL
TIM
EDIA

SE
RVI
CE
S

INTE
RAC
TIVE

G
A
M
ES

19534 1057 94 22 217 112 8 339 50 113 2 0 WWW

105 372 0 0 107 1 0 33 1 0 0 0 MAIL

0 0 0 0 0 0 0 0 0 0 0 0

FTP-
CONT
ROL

0 0 0 0 0 0 0 0 0 0 0 0
FTP-
PASV

0 0 0 0 0 0 0 0 0 0 0 0
ATTAC
K

0 0 0 0 0 0 0 0 0 0 0 0 P2P

0 0 0 0 0 0 0 0 0 0 0 0
DATA
BASE

2 0 0 0 0 1 0 112 3 0 0 0
FTP-
DATA

0 0 0 0 0 0 0 0 0 0 0 0
MULTI
MEDIA

0 0 0 0 0 0 0 0 0 0 0 0
SERVI
CES

0 0 0 0 0 0 0 0 0 0 0 0

INTER
ACTIV
E

0 0 0 0 0 0 0 0 0 0 0 0
GAME
S

4.2.3. Support Vector Machines – Weka SMO

The SMO parameters were the default settings in Weka using the reduced data set

as described in Table 4.1.

Table 4.11: SMO GUI Parameters.

Parameter Value
Build Logistic Models False
C 1.0
Cache Size 250007
Debug False
Epsilon 1.0E-12
Exponent 1.0
Feature Space Normalization False
Filter Type Normalize Training Data
Gamma 0.01

85

Lower Order Terms False
NumFolds -1
Random Seed 1
Tolerance Parameter 0.001
Use RBF False

SVM was clearly the superior classifier in the experimental results but processing

time was a concern as was noted by Kim[37]; the accuracy was nearly 98%.

Table 4.12: entry 02 data set test results from SMO model 04.

W
W
W

M
AI
L

FTP-
CONTRO
L

FTP-
PASV

ATT
ACK

P
2
P

DATA
BASE

FTP-
DATA

MULTI
MEDIA

SERVI
CES

INTERA
CTIVE

GA
MES

 185
27 17 0 9 15 86 40 4 1 3 0 0 WWW

4
269

7 11 0 0 0 35 0 1 3 0 0 MAIL

0 1 89 0 0 0 254 0 0 0 0 0
FTP-
CONTROL

2 0 0 330 0 0 0 0 0 0 0 0 FTP-PASV

0 0 0 0 0 0 0 0 4 0 0 0 ATTACK

9 1 0 5 0 7 0 0 12 0 0 0 P2P

0 0 0 0 0 0 0 0 0 0 0 0
DATABAS
E

2 2 0 0 0 0 0 1253 0 1 0 0
FTP-
DATA

14 7 0 0 4 1 0 0 132 0 0 1
MULTIME
DIA

1 1 0 0 0 0 0 0 0 213 2 0 SERVICES

0 0 0 0 0 0 0 0 0 0 0 0
INTERAC
TIVE

0 0 0 0 0 0 0 0 0 0 0 0 GAMES

4.3. Comparison of Machine Learning Methods

 These results indicate that for this application, LVQ 2.1 is the worst

performer, with a low true positive rate and a high false positive rate. The next would be

the SOM which in Weka does not provide a means of doing forbidden magnification; this

was an issue due to the nature of the data as not all the classes were even close to being

86

equally represented in the data. LVQ 3 did a bit better than SOM but still had very high

false positive rate for the largest class. The best but most time consuming of all methods

investigated was the SVM. Weka has a binary implementation called SMO, which means

additional coupling and pair-wise classification and comparison steps, on the order of n

choose 2 were required. SVM had the highest accuracy (96-99% depending on the data set

used for test), and lowest false positive rate of all the methods investigated. WWW class

still had the highest FP rate, but it was only 3.3% for the 4 model tested on data set 2 and

8.6% for the 8 model on data set 9.

 This investigation is to use SVMs whenever the application doesn’t require

real time results. SVMs may still be feasible in the application of network security if one

could reduce the number of classes which would result in a speed boost. This may be

possible if one were only looking at malicious flows such that there would be a few

classes for different attack types and the rest of the traffic is lumped into one “other-

miscellaneous” class. But as things are, SVMs lag the rest in terms of computational and

time resources. However, since real time is not the point of this thesis, it was decided that

SVM aka Weka SMO would be used to classify processed data from CDX and the World

Wide Web.

4.4. Hybrid Comparison of Performance to Network or Host Alone

The SMO parameters were the default settings in Weka using the combined data

set containing all the 500 and 248 host and network features as to be described in this

section. SMO was trained on 20% of the data set and the remainder 80% was used for

testing. The parameter settings displayed are from the 3.6.2 version of Weka which is a

87

more recent version than the one used to determine the best machine learning algorithm

used in section 4.2.

Table 4.13: SMO Parameters.

Parameter Value
Build Logistic Models False
C 1.0
Checks Turned Off False
Epsilon 1.0E-12
Filter Type Normalize Training Data
Kernel PolyKernel –C 250007 –E 1.0
NumFolds -1
Random Seed 1
Tolerance Parameter 0.001

It can be immediately noted that the scanning results are highly distinguishable

from the normal and infected classes. Their confusion matrices are listed in Table 4.13,

4.14 and 4.15. The rows in the confusion matrix are the labels of the samples, and the

columns are the classification results. Host only achieved an accuracy of 76%, Network

only achieved 87% and the Hybrid achieved an accuracy of 99%. Distinguish-ability

between the Scanning class and the other two classes is high through these three scenarios;

but, this is not a testament to the quality and effectiveness of the classification algorithm

or of the feature extractor but rather of the fact that this data was collected in a separate

environment, namely the CDX network. The other two remaining classes were gathered

later from the real World Wide Web and thus share many more similar features that cause

the Weka SMO classifier greater confusion and thus increased misclassifications.

Table 4.14: Host Only Classification Results Confusion Matrix.

 Infected Normal Scanning

88

Infected 83 78 0
Normal 26 117 0
Scanning 0 1 138

It is safe to assume here and also in the results that follow that the percentage of

correctly classified instances is actually inflated due to the artificially high accuracy of the

scanning class detection. Just by averaging the Infected and Normal detection rate would

yield a more representative accuracy metric of 66.7%.

Table 4.15: Network Only Classification Results

 Normal Scanning Infected
Normal 2672 4 876
Scanning 1 10373 0
Infected 1593 7 402

Averaging the Infected and Normal detection rate would yield a more

representative accuracy metric of 73.4%. On the surface, this is clearly better than the

results of the host data; however, one should consider the possibility that the type of

infection, by trojan malware in this case, could leave a larger footprint or effect more

statistically relevant change in network activity when compared to the host monitored

activity.

Table 4.16: Hybrid Host and Network Classification Results

 Infected Normal Scanning
Infected 159 0 2
Normal 0 140 3
Scanning 0 1 138

89

Averaging the Infected and Normal detection rate would yield a more

representative accuracy metric of 98.4%. This result outperformed host only classification

by 31.7% and network only classification by 25%. Text mining is typically used to look at

frequencies of word strings and is often used to try to identify natural language features

like authors’ writing style or language. Because effective HIDS depends heavily on event

correlation, the text mining approach did not factor in cause and effect and looked only at

the string structure. But this result is a positive indicator that something that seems as un-

intuitive as textual frequencies of host data from snapshot sensors contributes to greater

accuracy in malicious activity detection. It also lends credence to the hypothesis that if

numerical metrics of behavioral information rather than text frequencies could be

garnered, it may significantly improve detection while vastly decreasing the number of

attributes; and, ergo save on processing capacities. Also, since attacks tend to originate

more on the network side, greater accuracy possibly would’ve been achieved by placing

greater bias towards the network features. The final set of features trained tested in Weka

contained 500 attributes from the host data and only 248 attributes from the network data.

It’s conceivable that the number of attributes can be lowered on the host side and still

preserve this level of performance. This is an avenue that can be considered in future

work.

90

4.5. Hybrid Host-Network Comparison of Performance to SNORT

IDS

The analysis of the host data covered approximately 15 minutes of operational

time of data gathered from seven of the Syslnternals tools. The size of the data was

17.2mb. Taking a look at the SNORT alerts, there was 119 SNORT alerts that contained

any reference to 10.1.30.5, which was the IP address of the DNS server contributing the

CDX scanning data when the DNS was mostly likely discovered by NSA and being

actively scanned. This is something that will get lost to system administrators in the sea of

alerts to all the other nodes of the network. Most of the alerts are purely repetitious and

thus redundant. An example is:

[**] [1:1000001:0] Test https web activity [**]

[Priority: 0]

03/02-21:16:10.393891 10.1.30.5:1313 -> 65.55.25.59:443

TCP TTL:128 TOS:0x0 ID:11481 IpLen:20 DgmLen:40 DF

A* Seq: 0xB9C36DA0 Ack: 0x566EC7C0 Win: 0xFAF0 TcpLen:

20

The alert log contains over a hundred of this exact same alert, yet this alert reveals

little information as to the true nature of what’s going on between the client(s) and the

DNS host.

91

There were 5 SNORT alerts for each of the data sets Normal and Infected and

these were regarding SHELLCODE EXECUTION, attributable to the .bat scripts used to

start the SysInternals sensors to collect snapshot data. Effectively, SNORT got 0% TP and

FP, and fails to capture any relevant information in the VISTA experiment surfing the real

World Wide Web.

Comparing SNORT performance to the performance as tested in section 4.4 is not

a fair comparison. SNORT is fine grained and intentionally designed to perform on each

packet or sequence of packets it sniffs; it is not meant to interpret all the alerts together as

a whole to give a classification decision. However, just based on this rough description of

its output on the network data, it is clearly performing a dismal job, either missing alerts

or overwhelming the user. The goal is to move towards a system where a novice

administrator should be able to identify a security breach as it unfolds, yet SNORT is still

a system that requires high level training and experience to use effectively.

4.6. Summary

The results of this experiment confirm the hypothesis that statistical analysis using

text based data mining in combination with network traffic flows is a more effective

method for intrusion detection than host or network detection alone. At present,

integrating host data to network data may achieve the highest effectiveness by augmenting

existing event based NIDS systems like SNORT or BRO; for example, adding an interface

that allows it access to relevant host data to reduce alerts from the age old rules set

checking method. Trying to integrate these two vantages in a completely new platform

using machine learning techniques is still a ways off from everyday practicality. Machine

92

learning based applications continue to be resource intensive ones. The new McAfee

products called Entercept Host IPS and IntruShield Network IPS are currently the top tier

available commercial products making a preliminary attempt at a more holistic approach

to the enterprise network.

If one considers the roles of HIDS and NIDS in their own capacities, or of

examples of attacks that only Host IDS can detect and block:

• Local Privilege Escalation Attacks

• Client Side Attacks

And, examples of attacks that only Network IDS can detect and block:

• ARP Poisoning

• Protocol Flooding

• Routing Protocol Attacks

It looks as though there will always be cases that augmentation by host data would

not contribute to better detection and may in fact hamper the efficiency of malicious

activity discovery. Even if future commercial products do integrate host and network data,

some degree of separation may actually prove advantageous.

93

V. Conclusion and Future Work

The results of this thesis demonstrates that using text mining methods to extract

word vector attributes from raw host data is one effective though admittedly inefficient

(resource wise) method of hybridizing host and network data features. Determining the

best approach to use to combine the feature attributes of host and network data proved

problematic, largely due to the quality of the raw data collection environment.

Specifically, the time offset of the host and network packet information was not constant

throughout the CDX exercise and made it difficult to positively identify whether a certain

series of packets could be linked to the timestamps on the host data collection. The

associations here often had to resort to a best estimate of when one network event could be

linked to another on the host side. It does dramatically outperform from what the author

had anticipated once the two perspectives came together, despite some imperfect

matching. Although it seems that in this one case, text mining was not intuitive or obvious

in the beginning, the investigation of the methodology was ultimately worth the effort

resulting in impressively tantalizing findings that merit additional research. In many

existing signature based intrusion detection applications, strings and word vectors already

play an important role in making the determination of malicious infection attempts,

McAfee and Norton are just a few popular commercial examples. It would thus seem to

make sense that adding statistical analysis to look for correlations in frequency and length

of such strings might contribute to better determinations. Although not originally a goal,

this thesis also uncovered a very good but obsolete and forgotten tool for extracting

features from PCAP files. The vast majority of the credit goes to Dr Gilbert Peterson of

the Air Force Institute of Technology for making the 2005 perl source code work for

94

Andrew Moore’s original Fullstats attribute generator on the data gathered in 2010. The

Weka analysis of the pure packet CSV was remarkably accurate in terms of having high

true positives and low false negatives.

The data classifier admittedly did not have a hard time distinguishing data gathered

from the CDX network versus the data gathered from the real internet. This is a definite

blemish that detracts from the potential of this research and the results would have been

much more trustworthy if all three classes of data could be collected from one

environment all at the same time. Now, it becomes questionable as to how much of the

classification was based on the differences in the host OS, IP address ranges, timestamps,

names of running processes etc. when it is known that accurate classification should

mostly be based on the presence of non standard protocol [27], port numbers, packet size

info, and TCP header flags on the network side and changes in file i/o events or processes

and their resource utilization trends on the host end.

Another negative is the infection mechanism. The best scenario would’ve have

been to have a hacker actively targeting the host, having both successful and failed

intrusions, all the while logging actions. Instead, the CDX network failed to be infiltrated

and the performance of the HIDS/NIDS model is pitted against the alerts logged by Snort

for the CDX data. In the case of the “Infected” data gathered later, a generic trojan was

intentionally downloaded but the environment of the internet is not controlled enough as

to determine if or when command and control was successfully established to a botnet.

These problems in data collection are not easy ones to mitigate. Lots of research

dollars are expended in network security research and we have yet to establish a

95

thoroughly unbiased method of collection that accurately reflects the environment that the

typical user operates in.

5.1. Limitations and Assumptions

5.1.1. Inconsistent Controlled and Uncontrolled Environment

The CDX network defense was chosen over a real network to obtain the raw data

set. For CDX competition purposes, the network is isolated and activity is simulated due

to the potential damaging consequences of performing network attacks on a real network

with real consequences. Another hurdle preventing data collection on a real network is the

need to address invasion of privacy fears, an issue that both Google and Facebook have

often been portrayed in the media for being in violation of. In addition, any data collected

from an operational enterprise network must be scrubbed of personally identifiable

information.

Data collected from and the CDX’s closed network was later found to be lacking

representative samples of normal and infected activity. This necessitated a second data

collection on an even more limited network. This limited network consisted of a Windows

Vista host surfing the real internet. This gave the opportunity to collect a set of data with

normal activity features and a set of data from a host that had a trojan infection acquired

by downloading malicious scripts.

The inability to collect realistic enterprise data resulted in failures in trying to

perform feature generation and selection in order to separate attack versus normal activity.

Even in the controlled environment of the CDX, there were several uncontrolled elements:

96

it is unknown what were the actual attack exploit attempts used by the NSA and at what

time or sequence they occurred. The NSA failed to infiltrate our servers and any abnormal

behaviors we noticed like the inability to reach a certain web address, was not linked to

any alerts generated by our host event logs nor attributable to any SNORT alerts.

Categories of exploit activity are limited to the accuracy of alerts generated by

SNORT IDS, and do not represent the totality of activities which can be executed against

a host machine. Collections were made from multiple servers in the AFIT1 network. Due

to our unique setup, resulting feature selection and classification results is considered to

hold true only for the combination of operating system (Windows Server 2003), selected

sensors, and server configuration used here. However, since this thesis applies a

methodology which can be extended, it serves as a proof of concept versus a deliverable

IDS platform. Additional collections across many systems will include varied events

which will likely produce results of lower accuracy but should be similar in trend.

5.1.2. Sensor Impact to System

 The selected methodology involves the collection of a live system's internal

forensic data, which means that sensor tools must minimally interfere with server

functions. While consideration was given to select more lightweight sensors over resource

intensive ones, sensor activity still impacts collections. First, the system being monitored

is less responsive while running these additional programs to sense the host environment.

Second, collected data reflects information that includes evidence of sensor activity, and

modify the host systems. These facts should be taken into account during later stages of

97

forensic analysis so as not to mistake the impact of these tools for that of a successful

intrusion where none exists.

5.1.3. Partial Observable Environment

Due to the size of the search space, the limitations of processing power and the

sensors selected, the host environment is only partially observable. Given this constraint,

care is taken to choose sensors which each provide an uncorrelated subset of the search

space in order maximize what can be gained from the collected forensic evidence.

Optimality conditions for sensor selection include consistency, completeness, speed, and

resource overhead. While no formal method is used to select sensors for observing the

target environment, these conditions were taken into account, as was standardization; data

commonly used by other researchers in this field was collected here as well.

5.2. Contributions

This work provides several contributions to the field of intrusion detection and

Machine Learning. First, it shows that the current focus on just network data for malicious

activity classification can be given a huge boost by including some form of host

performance and state information. The results compare the novel approach of integrating

host and network features and applying support vector machine for the detection and

classification of three attack stages. Indications are that the best way to improve is to focus

on where the highest accuracy is already being achieved, at the network side.

Future research should be on finding and augmenting the network features with the

most relevant host features so that one can move away from the 500 string attributes used

98

here and toward something more compact that can feasibly be used for real time analysis.

Second, deficiencies for data collection are specifically identified and suggestions are

made for the need to standardize or develop a standard process akin to the “scientific

method,” for data collection that can uniquely describe the host state and associated

network activity.

Lastly, an updated Fullstats attribute generator is provided to aid future work in

network packet analysis. A meticulous background search revealed no other existing tool

that can pull as many features from a PCAP file. Further development of this tool to add a

GUI interface or to integrate into Weka or MATLAB could greatly aid this field of

research.

5.3. Recommendations for Future Work

The highest priority task for future work is to produce a labeled data set that

contains a broad continuum of attack stages would be ideal and both host and network

data need to be gathered together in the same environment. A methodology for this

collection should be developed so that data that must be collected at different times and in

different environments can still be compared.

Also of importance, is to identify an auxiliary method for associating host and

network data. Timestamps are not one-to-one associations and better “triggers” are

needed.

An application that can deal with the high volume of data in “real time” and

generate features “on the fly” that could compress the amount of analytical data would be

99

highly sought after. At the start of this research, the initial time hog was thought to be

running the machine learning algorithm. This proved true but additionally, both feature

generation and large file transfers took many more hours than anticipated. Research that

can bring tools for post mortem forensics into live action would greatly complement the

existing means that System Administrators have to identify network breaches.

Further, as mentioned in the Section 5.2, a periodic maintenance update to the

Fullstats attribute generator is needed. Since there really is no other tool that can pull as

many features from a PCAP file, such an application is valuable in the search for the most

important features or combinations of features which could significantly lessen the

processing time or burden for classification algorithms. Developing this tool to add a GUI

interface or to integrate into Weka or MATLAB could open this field up to other seasoned

researchers or novice investigators.

Lastly, due to the explosion in bandwidth of cell phone networks and large area

WI-MAX, focus should be shifting to making intrusion detection tools more ubiquitous

and able to function on a variety of mobile devices. Thus, it needs to be determined what

features are most important for the host if it is a wireless media device that may contain

other channels of communication such as 3G/4G, GPS or satellite radio. As

communication starts pushing the barriers beyond IP packets, security becomes an even

greater challenge to obtain.

100

Number Short Long
1 Server Port

2 Client Port
3 min IAT

4 q1 IAT
5 med IAT
6 mean IAT
7 q3 IAT
8 max IAT
9 var IAT
10 min data wire

11 q1 data wire
12 med data wire
13 mean data wire
14 q3 data wire
15 max data wire
16 var data wire
17 min data ip

18 q1 data ip
19 med data ip
20 mean data ip
21 q3 data ip
22 max data ip
23 var data ip
24 min data control

25 q1 data control
26 med data control
27 mean data control
28 q3 data control
29 max data control
30 var data control
31 total packets a b
32 total packets b a

Port Number at server; we can establish server and
client ports as we limit ourselves to flows for which

we see the initial connection set-up.
Port Number at client
Minimum packet inter-arrival time for all packets

of the flow (considering both directions).
First quartile inter-arrival time
Median inter-arrival time
Mean inter-arrival time
Third quartile packet inter-arrival

time Maximum packet inter-arrival time
Variance in packet inter-arrival time

Minimum of bytes in (Ethernet) packet, using the
size of the packet on the wire.

First quartile of bytes in (Ethernet) packet
Median of bytes in (Ethernet) packet
Mean of bytes in (Ethernet) packet
Third quartile of bytes in (Ethernet)

packet Maximum of bytes in (Ethernet) packet
Variance of bytes in (Ethernet) packet

Minimum of total bytes in IP packet, using the size
of payload declared by the IP packet

First quartile of total bytes in IP packet
Median of total bytes in IP packet
Mean of total bytes in IP packet
Third quartile of total bytes in IP

packet Maximum of total bytes in IP packet
Variance of total bytes in IP packet

Minimum of control bytes in packet, size of the
(IP/TCP) packet header
First quartile of control bytes in packet
Median of control bytes in packet
Mean of control bytes in packet
Third quartile of control bytes in

packet Maximum of control bytes in packet
Variance of control bytes packet

The total number of packets seen (client→server).
” (server→client)

Continued on next page

Appendix A. Discriminators and Definitions

101

Number Short Long
33 ack pkts sent a b

34 ack pkts sent b a
35 pure acks sent a b

36 pure acks sent b a
37 sack pkts sent a b

38 sack pkts sent b a
39 dsack pkts sent a b

40 dsack pkts sent b a
41 max sack blks/ack a b

42 max sack blks/ack b a
43 unique bytes sent a b

44 unique bytes sent b a
45 actual data pkts a b

46 actual data pkts b a
47 actual data bytes a b

48 actual data bytes b a
49 rexmt data pkts a b

50 rexmt data pkts b a
51 rexmt data bytes a b

52 rexmt data bytes b a
53 zwnd probe pkts a b

54 zwnd probe pkts b a
55 zwnd probe bytes a b

56 zwnd probe bytes b a
57 outoforder pkts a b

The total number of ack packets seen (TCP segments
seen with the ACK bit set) (client→server).
” (server→client)
The total number of ack packets seen that were not
piggy-backed with data (just the TCP header and
no TCP data payload) and did not have any of the
SYN/FIN/RST flags set (client→server)
” (server→client)
The total number of ack packets seen carrying TCP
SACK [6] blocks (client→server)
” (server→client)
The total number of sack packets seen that carried
duplicate SACK (D-SACK) [7] blocks. (client→server)
” (server→client)
The maximum number of sack blocks seen in any sack
packet. (client→server)
” (server→client)
The number of unique bytes sent, i.e., the total bytes of
data sent excluding retransmitted bytes and any bytes
sent doing window probing. (client→server)
” (server→client)
The count of all the packets with at least a byte of
TCP data payload. (client→server)
” (server→client)
The total bytes of data seen. Note that this includes
bytes from retransmissions / window probe packets if
any. (client→server)
” (server→client)
The count of all the packets found to be retransmis-
sions. (client→server)
” (server→client)
The total bytes of data found in the retransmitted
packets. (client→server)
” (server→client)
The count of all the window probe packets seen. (Win-
dow probe packets are typically sent by a sender when
the receiver last advertised a zero receive window, to
see if the window has opened up now). (client→server)
” (server→client)
The total bytes of data sent in the window probe pack-
ets. (client→server)
” (server→client)
The count of all the packets that were seen to arrive
out of order. (client→server)

Continued on next page

102

Number Short Long
58 outoforder pkts b a
59 pushed data pkts a b

60 pushed data pkts b a
61 SYN pkts sent a b

62 FIN pkts sent a b

63 SYN pkts sent b a

64 FIN pkts sent b a

65 req 1323 ws a b

66 req 1323 ts a b
67 req 1323 ws b a

68 req 1323 ts b a
69 adv wind scale a b

70 adv wind scale b a
71 req sack a b

72 req sack b a
73 sacks sent a b

74 sacks sent b a

” (server→client)
The count of all the packets seen with the PUSH bit
set in the TCP header. (client→server)
” (server→client)
The count of all the packets seen with the SYN bits
set in the TCP header respectively (client→server) The
count of all the packets seen with the FIN bits set in the
TCP header respectively (client→server)
The count of all the packets seen with the SYN bits
set in the TCP header respectively (server→client) The
count of all the packets seen with the FIN bits set in the
TCP header respectively (server→client)
If the endpoint requested Window Scali ng/Time
Stamp options as specified in RFC 1323[8] a ‘Y’ is
printed on the respective field. If the option was not
requested, an ‘N’ is printed. For example, an “N/Y”
in this field means that the window-scaling option was
not specified, while the Time-stamp option was speci-
fied in the SYN segment. (client→server)
. . .
If the endpoint requested Window Scaling/Time
Stamp options as specified in RFC 1323[8] a ‘Y’ is
printed on the respective field. If the option was not
requested, an ‘N’ is printed. For example, an “N/Y”
in this field means that the window-scaling option was
not specified, while the Time-stamp option was speci-
fied in the SYN segment. (client→server)
. . .
The window scaling factor used. Again, this field is
valid only if the connection was captured fully to in-
clude the SYN packets. Since the connection would
use window scaling if and only if both sides requested
window scaling [8], this field is reset to 0 (even if a
window scale was requested in the SYN packet for this
direction), if the SYN packet in the reverse direction
did not carry the window scale option. (client→server)
” (server→client)
If the end-point sent a SACK permitted option in the
SYN packet opening the connection, a ‘Y’ is printed;
otherwise ‘N’ is printed. (client→server)
” (server→client)
The total number of ACK packets seen carrying SACK
information. (client→server)
” (server→client)

Continued on next page

103

Number Short Long
75 urgent data pkts a b

76 urgent data pkts b a
77 urgent data bytes a b

78 urgent data bytes b a
79 mss requested a b

80 mss requested b a
81 max segm size a b

82 max segm size b a
83 min segm size a b

84 min segm size b a
85 avg segm size a b

86 avg segm size b a
87 max win adv a b

88 max win adv b a
89 min win adv a b

90 min win adv b a
91 zero win adv a b

92 zero win adv b a
93 avg win adv a b

The total number of packets with the URG bit turned
on in the TCP header. (client→server)
” (server→client)
The total bytes of urgent data sent. This field is cal-
culated by summing the urgent pointer offset values
found in packets having the URG bit set in the TCP
header. (client→server)
” (server→client)
The Maximum Segment Size (MSS) requested as a
TCP option in the SYN packet opening the connec-
tion. (client→server)
” (server→client)
The maximum segment size observed during the life-
time of the connection. (client→server)
” (server→client)
The minimum segment size observed during the life-
time of the connection. (client→server)
” (server→client)
The average segment size observed during the li fetime
of the connection calculated as the value reported in
the actual data bytes field divided by the actual data
pkts reported. (client→server)
” (server→client)
The maximum window advertisement seen. If the con-
nection is using window scaling (both sides negoti-
ated window scaling during the opening of the con-
nection), this is the maximum window-scaled adver-
tisement seen in the connection. For a connection us-
ing window scaling, both the SYN segments opening
the connection have to be captured in the dumpfile for
this and the following window statistics to be accurate.
(client→server)
” (server→client)
The minimum window advertisement seen. This is the
minimum window-scaled advertisement seen if both
sides negotiated window scaling. (client→server)
” (server→client)
The number of times a zero receive window was adver-
tised. (client→server)
” (server→client)
The average window advertisement seen, calculated
as the sum of all window advertisements divided by
the total number of packets seen. If the connection
endpoints negotiated window scaling, this average is
calculated as the sum of all window-scaled advertise-
ments divided by the number of window-scaled packets
seen. Note that in the window-scaled case, the win-
dow advertisements in the SYN packets are excluded
since the SYN packets themselves cannot have their
window advertisements scaled, as per RFC 1323 [8].
(client→server)

104

Number Short Long
94 avg win adv b a
95 initial window-bytes a b

96 initial window-bytes b a
97 initial window-packets a b

98 initial window-packets b a
99 ttl stream length a b

100 ttl stream length b a
101 missed data a b

102 missed data b a
103 truncated data a b

104 truncated data b a
105 truncated packets a b

106 truncated packets b a
107 data xmit time a b

” (server→client)
The total number of bytes sent in the initial window
i.e., the number of bytes seen in the initial fli ght of data
before receiving the first ack packet from the other
endpoint. Note that the ack packet from the other
endpoint is the first ack acknowledging some data (the
ACKs part of the 3-way handshake do not count), and
any retransmitted packets in this stage are excluded.
(client→server)
” (server→client)
The total number of segments (packets) sent in the
initial window as explained above. (client→server)
” (server→client)
The Theoretical Stream Length. This is calculated as
the difference between the sequence numbers of the
SYN and FIN packets, giving the length of the data
stream seen. Note that this calculation is aware of
sequence space wrap-arounds, and is printed only if
the connection was complete (both the SYN and FIN
packets were seen). (client→server)
” (server→client)
The missed data, calculated as the difference be-
tween the ttl stream length and unique bytes sent.
If the connection was not complete, this calculation
is invalid and an “NA” (Not Available) is printed.
(client→server)
” (server→client)
The truncated data, calculated as the total bytes of
data truncated during packet capture. For example,
with tcpdump, the snaplen option can be set to 64
(with -s option) so that just the headers of the packet
(assuming there are no options) are captured, truncat-
ing most of the packet data. In an Ethernet with max-
imum segment size of 1500 bytes, this would amount
to truncated data of 1500 64 = 1436bytes for a packet.
(client→server)
” (server→client)
The total number of packets truncated as explained
above. (client→server)
” (server→client)
Total data transmit time, calculated as the differ-
ence between the times of capture of the fir st and
last packets carrying non-zero TCP data payload.
(client→server)

Continued on next page

105

Number Short Long
108 data xmit time b a
109 idletime max a b

110 idletime max b a
111 throughput a b

112 throughput b a
113 RTT samples a b

114 RTT samples b a
115 RTT min a b
116 RTT min b a
117 RTT max a b
118 RTT max b a
119 RTT avg a b

120 RTT avg b a
121 RTT stdv a b

122 RTT stdv b a
123 RTT from 3WHS a b

” (server→client)
Maximum idle time, calculated as the maximum time
between consecutive packets seen in the direction.
(client→server)
” (server→client)
The average throughput calculated as the unique bytes
sent divided by the elapsed time i.e., the value reported
in the unique bytes sent field divided by the elapsed
time (the time difference between the capture of the
first and last packets in the direction). (client→server)
” (server→client)
The total number of Round-Trip Time (RTT) sam-
ples found. tcptrace is pretty smart about choosing
only valid RTT samples. An RTT sample is found
only if an ack packet is received from the other end-
point for a previously transmitted packet such that
the acknowledgment value is 1 greater than the last
sequence number of the packet. Further, it is required
that the packet being acknowledged was not retrans-
mitted, and that no packets that came before it in
the sequence space were retransmitted after the packet
was transmitted. Note : The former condition invali-
dates RTT samples due to the retransmission ambigu-
ity problem, and the latter condition invalidates RTT
samples since it could be the case that the ack packet
could be cumulatively acknowledging the retransmit-
ted packet, and not necessarily ack-ing the packet in
question. (client→server)
” (server→client)
The minimum RTT sample seen. (client→server)
” (server→client)
The maximum RTT sample seen. (client→server)
” (server→client)
The average value of RTT found, calculated
straightforward-ly as the sum of all the RTT values
found divided by the total number of RTT samples.
(client→server)
” (server→client)
The standard deviation of the RTT samples.
(client→server)
” (server→client)
The RTT value calculated from the TCP 3-Way
Hand-Shake (connection opening) [9], assuming that
the SYN packets of the connection were captured.
(client→server)

Continued on next page

106

Number Short Long
124 RTT from 3WHS b a
125 RTT full sz smpls a b

126 RTT full sz smpls b a
127 RTT full sz min a b
128 RTT full sz min b a
129 RTT full sz max a b
130 RTT full sz max b a
131 RTT full sz avg a b
132 RTT full sz avg b a
133 RTT full sz stdev a b

134 RTT full sz stdev b a
135 post-loss acks a b

136 post-loss acks b a
137 segs cum acked a b

138 segs cum acked b a
139 duplicate acks a b

140 duplicate acks b a
141 triple dupacks a b

142 triple dupacks b a
143 max # retrans a b

” (server→client)
The total number of full-size RTT samples, calculated
from the RTT samples of full-size segments. Full-size
segments are defined to be the segments of the largest
size seen in the connection. (client→server)
” (server→client)
The minimum full-size RTT sample. (client→server)
” (server→client)
The maximum full-size RTT sample. (client→server)
” (server→client)
The average full-size RTT sample. (client→server)
” (server→client)
The standard deviation of full-size RTT samples.
(client→server)
” (server→client)
The total number of ack packets received after losses
were detected and a retransmission occurred. More
precisely, a post-loss ack is found to occur when an
ack packet acknowledges a packet sent (acknowledg-
ment value in the ack pkt is 1 greater than the packet’s
last sequence number), and at least one packet occur-
ring before the packet acknowledged, was retransmit-
ted later. In other words, the ack packet is received
after we observed a (perceived) loss event and are re-
covering from it. (client→server)
” (server→client)
The count of the number of segments that were cumu-
latively acknowledged and not directly acknowledged.
(client→server)
” (server→client)
The total number of duplicate acknowledgments re-
ceived. (client→server)
” (server→client)
The total number of triple duplicate acknowledgments
received (three duplicate acknowledgments acknowl-
edging the same segment), a condition commonly used
to trigger the fast-retransmit/fast-recovery phase of
TCP. (client→server)
” (server→client)
The maximum number of retransmissions seen for
any segment during the lifetime of the connection.
(client→server)

Continued on next page

107

Number Short Long
144 max # retrans b a
145 min retr time a b

146 min retr time b a
147 max retr time a b

148 max retr time b a
149 avg retr time a b

150 avg retr time b a
151 sdv retr time a b

152 sdv retr time b a
153 min data wire a b

154 q1 data wire a b
155 med data wire a b
156 mean data wire a b
157 q3 data wire a b
158 max data wire a b
159 var data wire a b
160 min data ip a b
161 q1 data ip a b
162 med data ip a b
163 mean data ip a b
164 q3 data ip a b
165 max data ip a b
166 var data ip a b
167 min data control a b
168 q1 data control a b
169 med data control a b
170 mean data control a b
171 q3 data control a b
172 max data control a b
173 var data control a b
174 min data wire b a

175 q1 data wire b a
176 med data wire b a
177 mean data wire b a

” (server→client)
The minimum time seen between any two
(re)transmissions of a segment amongst all the
retransmissions seen. (client→server)
” (server→client)
The maximum time seen between any two
(re)transmissions of a segment. (client→server)
” (server→client)
The average time seen between any two
(re)transmissions of a segment calculated from
all the retransmissions. (client→server)
” (server→client)
The standard deviation of the retransmission-time
samples obtained from all the retransmissions.
(client→server)
” (server→client)
Minimum number of bytes in (Ethernet) packet
(client→server)
First quartile of bytes in (Ethernet) packet
Median of bytes in (Ethernet) packet
Mean of bytes in (Ethernet) packet
Third quartile of bytes in (Ethernet) packet
Maximum of bytes in (Ethernet) packet
Variance of bytes in (Ethernet) packet
Minimum number of total bytes in IP packet
First quartile of total bytes in IP packet
Median of total bytes in IP packet
Mean of total bytes in IP packet
Third quartile of total bytes in IP packet
Maximum of total bytes in IP packet
Variance of total bytes in IP packet
Minimum of control bytes in packet
First quartile of control bytes in packet
Median of control bytes in packet
Mean of control bytes in packet
Third quartile of control bytes in packet
Maximum of control bytes in packet
Variance of control bytes packet
Minimum number of bytes in (Ethernet) packet
(server→client)
First quartile of bytes in (Ethernet) packet
Median of bytes in (Ethernet) packet
Mean of bytes in (Ethernet) packet

Continued on next page

108

Number Short Long
178 q3 data wire b a
179 max data wire b a
180 var data wire b a
181 min data ip b a
182 q1 data ip b a
183 med data ip b a
184 mean data ip b a
185 q3 data ip b a
186 max data ip b a
187 var data ip b a
188 min data control b a
189 q1 data control b a
190 med data control b a
191 mean data control b a
192 q3 data control b a
193 max data control b a
194 var data control b a
195 min IAT a b
196 q1 IAT a b
197 med IAT a b
198 mean IAT a b
199 q3 IAT a b
200 max IAT a b
201 var IAT a b
202 min IAT b a
203 q1 IAT b a
204 med IAT b a
205 mean IAT b a
206 q3 IAT b a
207 max IAT b a
208 var IAT b a
209 Time since last connection
210 No. transitions bulk/trans

211 Time spent in bulk
212 Duration
213 % bulk
214 Time spent idle

Third quartile of bytes in (Ethernet) packet
Maximum of bytes in (Ethernet) packet
Variance of bytes in (Ethernet) packet
Minimum number of total bytes in IP packet
First quartile of total bytes in IP packet
Median of total bytes in IP packet
Mean of total bytes in IP packet
Third quartile of total bytes in IP packet
Maximum of total bytes in IP packet
Variance of total bytes in IP packet
Minimum of control bytes in packet
First quartile of control bytes in packet
Median of control bytes in packet
Mean of control bytes in packet
Third quartile of control bytes in packet
Maximum of control bytes in packet
Variance of control bytes packet
Minimum of packet inter-arrival time (client→server)
First quartile of packet inter-arrival time
Median of packet inter-arrival time
Mean of packet inter-arrival time
Third quartile of packet inter-arrival time
Maximum of packet inter-arrival time
Variance of packet inter-arrival time
Minimum of packet inter-arrival time (server→client)
First quartile of packet inter-arrival time
Median of packet inter-arrival time
Mean of packet inter-arrival time
Third quartile of packet inter-arrival time
Maximum of packet inter-arrival time
Variance of packet inter-arrival time
Time since the last connection between these hosts The
number of transitions between transaction mode and
bulk transfer mode, where bulk transfer mode is
defined as the time when there are more than three
successive packets in the same direction without any
packets carrying data in the other direction
Amount of time spent in bulk transfer mode
Connection duration
Percent of time spent in bulk transfer
The time spent idle (where idle time is the accumu-
lation of all periods of 2 seconds or greater when no
packet was seen in either direction)

Continued on next page

109

Number Short Long
215 % idle
216 Effective Bandwidth

217 Effective Bandwidth a b
218 Effective Bandwidth b a
219 FFT all

220 FFT all
221 FFT all
222 FFT all
223 FFT all
224 FFT all
225 FFT all
226 FFT all
227 FFT all
228 FFT all
229 FFT a b

230 FFT a b
231 FFT a b
232 FFT a b
233 FFT a b
234 FFT a b
235 FFT a b
236 FFT a b
237 FFT a b
238 FFT b a
239 FFT b a

240 FFT b a
241 FFT b a
242 FFT b a
243 FFT b a
244 FFT b a
245 FFT b a
246 FFT b a
247 FFT b a
248 FFT b a
249 Classes

Percent of time spent idle
Effective Bandwidth based upon entropy [10] (both
directions)
” (client→server)
” (server→client)
FFT of packet IAT (arctan of the top-ten frequencies
ranked by the magnitude of their contribution) (all
traffi c) (Frequency #1)
” (Frequency #2)
” . . .
” . . .
” . . .
” . . .
” . . .
” . . .
” . . .
” (Frequency #10)
FFT of packet IAT (arctan of the top-ten frequen-
cies ranked by the magnitude of their contribution)
(client→server) (Frequency #1)
” (Frequency #2)
” . . .
” . . .
” . . .
” . . .
” . . .
” . . .
” . . .
” (Frequency #10)
FFT of packet IAT (arctan of the top-ten frequen-
cies ranked by the magnitude of their contribution)
(server→client) (Frequency #1)
” (Frequency #2)
” . . .
” . . .
” . . .
” . . .
” . . .
” . . .
” . . .
” (Frequency #10)
Application class, as assigned in [1]

110

 Appendix B. Notes from CDX data collection

1. All servers and workstations were on Virtual Machines, AFIT2 had them in ESXi and

had no access to portable USB Drives to get extra storage or transport data.

2. Virtual machines also had trouble with recognizing CD drives sometimes.

3. All tools had to be run as Admin. These were from the Windows SysInternals suite:

services, processes, handle, netstat, listDLLs, logonsessions and psInfo.

4. The memory tool windd requires a .sys file to be run in batch mode and that file must

be stored in the directory indicated by typing "sc qc win32dd" or "sc qc win64dd"

5. windd must be run and memory dump saved in the same directory as where the

executable is stored.

6. The memory dump took 4-6 minutes to complete running on low priority, size of

dumps ranged from 700mb-2gb.

7. The memory dump process cannot be killed once started except by a hard shutdown.

8. The Task Scheduler is disabled on user workstations by group policy or else it

would've been possible to run tools without a user logged on. In Vista and higher, it can

even hide the cmd prompt to keep it from interfering with server screen space.

9. The naming of files according to time did not always work for the memory dump.

Whenever the hour was in the single digits, the file would not record the time correctly.

This error made the files overwrite each other from 12am to 10am (0100 to 1000 hours).

111

10. Firewall was implemented by OpenBSD with PF, SNORT was also used on this

machine.

11. IPSEC was used to limit ports for communication between servers and workstations,

this severely limited the actions that could cause servers to be compromised.

12. KIWI Syslog was used as the software for the event logging server. Snare was used as

the agent for collecting and directing logs from networked windows machines.

13. Time was not synchronized to the network in a consistent manner and affect the

differential between the network packet timestamps and host data timestamps.

User friendly considerations:

If Users are only allowed by policy to log on one at a time, not switch, memory dump

interferes with the ability to log off.

If allotted virtual RAM < 1GB, windd will freeze or blue-screen the machine OS.

Memory dump interferes with reboot and/or log off. If the situation is to defend against

network attack, data collection can interfere with responsive actions.

Exchange and Domain Controller most sensitive to environmental changes and these

tools should only be added if no other changes will be made to the settings on these

machines.

112

Admins can feel insecure about creating other admin accounts, I could not convince

server admins to give me another account to be able to frequently monitor these tools.

They had to log me in and out, made it difficult when they had higher priorities.

After the exercise started, the passwords were changed on a daily basis and there were

not enough copies made of the new list to easily access. They were so complicated that

even the admins were unable to memorize them.

113

Appendix C. List of Software Tools

These tools will be provided as a copy on a supplied external Hard Drive.

A batch script to automate host data collection:

@echo off

:loop

echo Starting Dlls to
"F:\F_data\Dlls\dlls_%date:~12,2%_%date:~4,2%_%date:~7,2%_%time:~0,2%_%time:
~3,2%_%time:~6,2%.txt"

echo.

echo Press [CTRL]-C to exit

F:\ForensicScan\Toolkit\Listdlls.exe >>
"F:\F_data\Dlls\dlls_%date:~12,2%_%date:~4,2%_%date:~7,2%_%time:~0,2%_%time:
~3,2%_%time:~6,2%.txt"

echo Starting LoggedOn to
"C:\F_data\LogonSessions\LoggedOn_%date:~12,2%_%date:~4,2%_%date:~7,2%_%ti
me:~0,2%_%time:~3,2%_%time:~6,2%.txt"

echo.

echo Press [CTRL]-C to exit

F:\ForensicScan\Toolkit\logonsessions.exe >>
"F:\F_data\LogonSessions\LoggedOn_%date:~12,2%_%date:~4,2%_%date:~7,2%_%tim
e:~0,2%_%time:~3,2%_%time:~6,2%.txt"

echo Starting Handles to
"F:\F_data\Handles\handles_%date:~12,2%_%date:~4,2%_%date:~7,2%_%time:~0,2%_
%time:~3,2%_%time:~6,2%.txt"

echo.

114

echo Press [CTRL]-C to exit

F:\ForensicScan\Toolkit\handle.exe >>
"F:\F_data\Handles\handles_%date:~12,2%_%date:~4,2%_%date:~7,2%_%time:~0,2%_
%time:~3,2%_%time:~6,2%.txt"

netstat -o -n -a >
"F:\F_data\Netstat\netstat_%date:~12,2%_%date:~4,2%_%date:~7,2%_%time:~0,2%_%
time:~3,2%_%time:~6,2%.txt"

echo Starting process snapshots to
"F:\F_data\Processes\processes_%date:~12,2%_%date:~4,2%_%date:~7,2%_%time:~0,2
%_%time:~3,2%_%time:~6,2%.pslistx"

echo.

echo Press [CTRL]-C to exit

F:\ForensicScan\Toolkit\pslist.exe -x >>
"F:\F_data\Processes\processes_%date:~12,2%_%date:~4,2%_%date:~7,2%_%time:~0,2
%_%time:~3,2%_%time:~6,2%.pslistx"

type C:\WINDOWS\System32\drivers\etc\services >
"F:\F_data\Services\services_%date:~12,2%_%date:~4,2%_%date:~7,2%_%time:~0,2%
%time:~3,2%%time:~6,2%.services"

ping localhost -n 61 > nul

Goto loop

Host Data Collection:

15 minute intervals:

Win32dd memory capture;

115

1 minute intervals: (as text files)

C:\WINDOWS\System32\drivers\etc\services; SysInternals: Listdlls,

LogonSessions, Handle, Pslist, NetStat; Once per logon: PsInfo

Network Collection:

Always on:

Wireshark to collect PCAP, Snort IDS with standard rule set to log alerts

Data Preprocessing:

Network feature extraction- Fullstats by Andrew Moore of Cambridge

University, configured to Ubuntu OS supplied on hard drive.

Host text files feature extraction - Weka version 3.6

http://www.cs.waikato.ac.nz/ml/weka/

Determine best Machine learning algorithm - Weka Class Algs [31] from

http://wekaclassalgos.sourceforge.net/

MS Excel to merge CSV features files.

Data Features Classification:

Weka version 3.6 http://www.cs.waikato.ac.nz/ml/weka/

116

Bibliography

1. AntiSource, "Malware Threats Triangle," 2 Feb 2011.
http://www.antisource.com/staticpages/index.php/malware-triangle

2. Bai, Yuebin, and Hidetsune Kobayashi. "Intrusion Detection Systems:
Technology and Development," 17th International Conference on Advanced
Information Networking and Applications, 710 (2003).

3. Biles, Simon. "Detecting the unknown with snort and statistical packet anomaly
detection engine (SPADE)," Computer Security Online Ltd. 5 January 2011.
http://www.computersecurityonline.com/spade/SPADE.pdf

4. Bullinaria, J.A. "Learning Vector Quantization (LVQ): Introduction to Neural
Computation: Guest Lecture 2," 07 Sept 2010.
http://www.cs.bham.ac.uk/~pxt/NC/lvq_jb.pdf

5. Clay, Wilson. "Botnets, Cybercrime, and Cyberterrorism: Vulnerabilities and
Policy Issues for Congress," Washington, D.C.: Congressional Research Service,
25, (January 29, 2008).

6. CSO Magazine. "OVER CONFIDENCE IS PERVASIVE AMONGST
SECURITY PROFESSIONALS," 2007 E-Crime Watch Survey, 26 Feb 2011.
www.cert.org/archive/pdf/ecrimesummary07.pdf

7. Davis, Joshua, "Hackers Take Down the Most Wired Country in Europe" WIRED
MAGAZINE: ISSUE 15.09, 10 Feb. 2011
http://www.wired.com/politics/security/magazine/15-
09/ff_estonia?currentPage=all

8. Depren, O., M. Topallar, E. Anarim, and M.K. Ciliz. "An intelligent intrusion
detection system (IDS) for anomaly and misuse detection in computer networks,"
Expert Systems with Applications, 29(4): 713-722, (2005).

9. Duffield, N., P. Haffner, B. Krishnamurthy, and H. Ringberg. "Rule based
anomaly detection on IP flows," Proc. IEEE INFOCOM, Rio de Janeiro, Brazil,
(April 2009).

10. Epic.Org "Google Violated New Zealand Privacy Law," 10 Feb 2011.
http://epic.org/2010/12/google-violated-new-zealand-pr.html

11. Erskine, J.R. "Developing Cyberspace Data Understanding Using CRISP-DM for
Host-based IDS Feature Mining," Master's Thesis, Air Force Institute of
Technology, WPAFB, (2010).

12. Florez, G. "Analyzing system call sequences with Adaboost," Proceedings of the
2002 International Conference on Artificial Intelligence and Applications (AIA),
Malaga, Spain. (2002).

13. Germano, T. "Self-Organizing Maps," 07 Sept 2010.
http://davis.wpi.edu/~matt/courses/soms/

117

14. Gonzalez, F. and Dasgupta, D. "Neuro-immune and self-organizing map
approaches to anomaly detection: A comparison," Proceedings of the 1st
International Conference on Artificial Immune Systems, 203-211, (2002).

15. Gonzalez, J.A. "Numerical Analysis for Relevant Features in Intrusion Detection
(NARFid)", Master's Thesis, Air Force Institute of Technology, WPAFB, (2009).

16. Gregg, M., Certified Ethical Hacker, Indianapolis, IN: Que Certification, (2006).
17. Grimes, Roger, "Stuxnet Marks the Start of the Next Security Arms Race"

InfoWorld, 10 Feb 2011.
http://www.pcworld.com/article/217725/stuxnet_marks_the_start_of_the_next_se
curity_arms_race.html

18. Gu J. "An Introduction of Support Vector Machine" 16 Oct 2008, 5 Nov 2010.
http://www1.cs.columbia.edu/~belhumeur/courses/biometrics/2009/svm.ppt

19. Gu, Guofei, Phillip Porras, Vinod Yegneswaran, Martin Fong, and Wenke Lee.
"BotHunter: Detecting malware infection through ids-driven dialog correlation,"
Proceedings of the 16th USENIX Security Symposium, (2007).

20. Guan, Yu, Ali A. Ghorbani, and Nabil Belacel. "Y-means: a clustering method for
intrusion detection," Canadian Conference on Electrical and Computer
Engineering, 1-4, Montreal, Quebec, Canada, (May 2003).

21. Haag, Charles R., Gary B. Lamont, Paul D. Williams, and Gilbert L. Peterson.
"An artificial immune system-inspired multiobjective evolutionary algorithm with
application to the detection of distributed computer network intrusions", GECCO
'07: Proceedings of the 2007 GECCO conference companion on Genetic and
evolutionary computation. (2007).

22. Hendry, Gilbert, and Shanchieh Yang. "Intrusion Signature Creation via
Clustering Anomalies," Proceedings of SPIE, (69730): 1-12 (2008).

23. Hunt, R.J. "Percent agreement, Pearson's correlation, and kappa as measures of
inter-examiner reliability." J. Dent. Res. 65: 128-130, (1986).

24. Internet Security Systems White Paper, Network- vs. Host-based Intrusion
Detection, A Guide to Intrusion Detection Technology. 5 January 2011.
http://www.documents.iss.net/whitepapers/nvh_ids.pdf

25. Julisch, Klause, and Marc Dacier, "Mining Intrusion Detection Alarms for
Actionable Knowledge," 8th ACM International Conference on Knowledge
Discovery and Data Mining, 366-375 (2002).

26. Kanlayasiri, Urupoj, Surasak Sanguanpong, and Wipa Jaratmanachot. "A Rule-
based Approach for Port Scanning Detection," Proceedings of the 23rd Electrical
Engineering Conference, Chiang Mai, Thailand, (2000).

27. Kim, H. "Internet Traffic Classification Demystified: Myths, Caveats, and Best
Practices." KNOM Tutorial POSTECH (2007), 2 Feb 2011.
http://www.caida.org/publications/papers/2008/classification_demystified/

118

28. Kolbitsch, Clemens, Paolo Milani Comparetti, Christopher Kruegel, Engin Kirda,
Xiaoyong Zhou, and Xiaofeng Wang. "Effective and efficient malware detection
at the end host," USENIX Security Symposium, (August 2009).

29. Lakhina, Anukool, Mark Crovella, and
30. Larochelle, H. and Y. Bengio. "Classification using discriminative restricted

Boltzmann machines", Proceedings of the 25th international conference on
Machine learning, 307:536-543, (2008).

31. Lee, J.B. "WEKA Classification Algorithms," 07 Sept 2010.
http://wekaclassalgos.sourceforge.net/

32. Lee, Wenke, and Dong Xiang. "Information-Theoretic Measures for Anomaly
Detection," IEEE Symposium on Security and Privacy, Oakland, CA, (May
2001).

33. Mahoney, Matthew V, and Phillip K. Chan. "Learning Nonstationary Models of
Normal Network Traffic for Detecting Novel Attacks," Proc. SIGKDD, 376-385,
(2002).

34. Makanju, A.A.O., A.N. Zincir-Heywood, and E.E. Milios. "Clustering event logs
using iterative partitioning," Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining, 1255-1264. ACM New
York, NY, USA, (2009).

35. Markoff, John, "Before the Gunfire, Cyberattacks" NYTimes, 13 Aug 2008, 10
Feb 2011. http://www.nytimes.com/2008/08/13/technology/13cyber.html

36. Maxion, R.A., and K.M.C. Tan. "Benchmarking Anomaly-Based Detection
Systems," 1st International Conference on Dependable Systems & Networks,
25(28): 623-630 (June 2000).

37. McClure, S., J. Scambray, and G. Kurtz. Hacking Exposed 6: Network Security
Secrets & Solutions, McGraw-Hill Osborne Media, (2009).

38. McHugh, J. "Testing Intrusion Detection Systems: A Critique of the 1998 and
1999 DARPA IDS evaluations as performed by Lincoln Laboratory," ACM
Transactions on Information and System Security, 3(4) (November 2000).

39. MedCalc. "ROC curve analysis in MedCalc," 20 Feb 2011.
http://www.medcalc.org/manual/roc-curves.php

40. Meyer, T.A., and B. Whateley, "Spambayes: Effective open-source, bayesian
based, email classification system," Proceedings of the First Conference on Email
and Anti-Spam (CEAS), (2004), 1 May 2010. http://www.ceas.cc/papers-
2004/136.pdf

41. Moore, Andrew W. and Denis Zuev, "Internet Traffic Classification Using
Bayesian Analysis Techniques," Proceedings of the ACM SIGMETRICS, Banff,
Canada, (June 2005) 3 Mar 2011.
http://www.cl.cam.ac.uk/research/srg/netos/brasil/data/index.html

119

42. Moore, Andrew W. and Konstantina Papagiannaki. "Toward the Accurate
Identification of Network Applications," Proceedings of the Sixth Passive and
Active Network Measurement Workshop, (PAM 2005), Lecture Notes in
Computer Science, 3431: 41-54. Springer, (2005).

43. Moore, Andrew W., Denis Zuev, and Michael Crogan. "Discriminators for Use in
Flow-based Classification" Technical Report RR-05-13, Queen Mary, University
of London, August 2005.

44. Newman, Daniel, Kristina M. Manalo, and Ed Tittel. "Intrusion Detection
Overview," InformIT, (June 2004). 20 Feb 2011.
http://www.informit.com/articles/article.aspx?p=174342

45. Ning, P., Y. Cui, and D. Reeves. "Constructing attack scenarios through
correlation of intrusion alerts." Proceedings of Computer and Communications
Security, (2002).

46. Okolica, James and Gilbert L. Peterson. "A Compiled Memory Analysis Tool,"
Advances in Digital Forensics VI, IFIP Advances in Information and
Communication Technology, 337: 195-204, (2010).

47. Paxson, Vern. "BRO: A System for Detecting Network Intruders in Real Time,"
Computer Networks, 31 (23): 2435-2463 (1999).

48. Pieprzyk, Josef, Thomas Hardjono, and Jennifer Seberry. Fundamentals of
Computer Security, New York: Springer Books, (2003).

49. Pietraszek, T. "Alert Classification to Reduce False Positives in Intrusion
Detection," PhD Thesis. Germany: Albert-Ludwigs-Universitat Freiburg im
Breisgau, (2006).

50. Plattner, B., and A. Wagner. "Entropy Based Worm and Anomaly Detection in
Fast IP Networks" Proceedings of 14th IEEE WET ICE / STCA security
workshop, 172-177 (2005).

51. Russinovich, Mark. "Microsoft SysInternals Suite" 2 Feb 2011,
http://technet.microsoft.com/enus/sysinternals/bb842062.aspx

52. Sarasamma, S.T., Q. A. Zhu, J. Huff, "Hierarchical Kohonen Net for Anomaly
Detection in Network Security," IEEE Transactions on Systems, Man, and
Cybernetics - Part B: Cybernetics, 35(2): 302-312, (2005).

53. Shapiro, Joseph M., Gary B. Lamont, and Gilbert L. Peterson. "An Evolutionary
Algorithm to Generate Hyper-Ellipsoid Detectors for Negative Selection,"
GECCO 2005: Genetic and Evolutionary Computation Conference, 337-344,
Washington, DC, (June 2005).

54. Shyu, M.L., S.C. Chen, K. Sarinnapakorn, and L.W. Chang. "A novel anomaly
detection scheme based on principal component classifier," Proceedings of the
IEEE Foundations and New Directions of Data Mining Workshop, (2003).

120

55. Simache, C., M. Kaaniche, and A. Saidane. "Event log based dependability
analysis of Windows NT and 2K systems," Proc. of the 2002 Pacific Rim
International Symposium on Dependable Computing (PRDC02). (2002).

56. Suiche, Mathieu. Mathieu Suiche's Blog, 3 June 2010.
http://www.msuiche.net/2009/10/11/windd-1-3-final-x86-and-x64/

57. System Solutions Group. "IDS Thoughts" 2 Feb 2011. http://www.ssg-
inc.net/cyber_crime/ids_thoughts.html

58. Valdes, A., and K. Skinner. "Probabilistic alert correlation," Proceedings of
Recent Advances in Intrusion Detection (RAID), 54-68, (2001).

59. Wang, K., G. Cretu, and S.J. Solto. "Anomalous Payload-based Worm Detection
and Signature Generation," Symposium on Recent Advances in Intrusion
Detection, 227-246 (2005).

60. Wei, Yan. "Network Attack Scenarios Extraction and Categorization by Mining
IDS Alert Streams," Journal of Universal Computer Science, 11(8): 1367-1382
(2005).

61. Wu, H.C., R.W.P. Luk, K.F. Wong, and K.L. Kwok. "Interpreting tf-idf term
weights as making relevance decisions." ACM Trans. Inf. Syst., 26(3):1-37,
(2008).

62. Yung, K.H. "Detecting Long Connection Chains of Interactive Terminal
Sessions," Proceedings of the 5th Annual Symposium on Recent Advances in
Intrusion Detection, 1-16 (2002).

63. Zhang, Z., J. Li, C.N. Manikopoulos, J. Jorgenson, J. Ucles. "HIDE: a hierarchical
network intrusion detection system using statistical preprocessing and neural
network classification", Proc. IEEE Workshop on Information Assurance and
Security, 85-90, (2001).

121

Vita

1st Lt Jenny W. Ji graduated from John P. Stevens High School in Edison, NJ

in 2003. She entered undergraduate studies at the University of California – Los Angeles,

Los Angeles, California. In t h e s u mm er o f 2006; she was hired as an intern for

the Information Services department of Amgen, a large biotechnology corporation.

That same year, she finished her Bachelor’s of Science degree in Electrical

Engineering. She was commissioned into the United States Air Force in

September of 2007 though Officer Training School at Maxwell AFB, Alabama.

Lt Ji was first assigned in October of 2007 to the Air Force Research Laboratory,

Information Directorate in Rome, New York where she worked as a junior engineer in

support of research to develop secure processing chips. In the beginning of 2009, she

was admitted into the online MBA program offered by the University of

Massachusetts–Amherst and expects to finish her curriculum there in 2012. Also in

2009, Lt Ji was selected to participate in the AFRL Commander’s Challenge with the

team based in Kirtland AFB, New Mexico to find solutions using lightweight, low

power, covert sensor devices for Intelligence, Surveillance and Reconnaissance in low

accessibility and mountainous terrain. In the autumn of that same year, she began her

MS studies at the Air Force Institute of Technology, Wright-Patterson AFB, Ohio.

Upon her AFIT graduation in March of 2011, she will return to AFRL, but will

remain at Wright Patterson AFB in the lab’s Sensors Directorate.

Permanent address: 2950 Hobson Way
Air Force Institute of Technology
Wright-Patterson AFB, OH 45433

122

10G328

public

	AFIT-GE-ENG-11-18.pdf

